
spss中table容易被忽视的秘密
1、变量的类型:
注:想要变类型的话,直接用左键点变量,然后点右键(选择你想要的类型点左键)
2、output的数据形式设置,菜单操作见:(format是数据形式,Decimal是小数点的位数)
nnnn。简单数值。
nnnn%。在值末尾加上百分比符号。
自动。已定义变量显示格式,包括小数位数。
N=nnnn。在值前面显示 N=。在未显示摘要统计的表中,此格式可用于计数、有效 N 和总计 N。
(nnnn)。所有值都用括号括起。
(nnnn)(负值)。只有负值用括号括起。
(nnnn%)。所有值都用括号括起,并在值末尾加上一个百分比符号。
n,nnn.n。逗号格式。无论区域设置如何,均使用逗号作为分组分隔符,使用句点作为小数指示符。
n.nnn,n。点格式。无论区域设置如何,均使用句点作为分组分隔符,使用逗号作为小数指示符。
$n,nnn.n。美元格式。在值前面显示美元符号;无论区域设置如何,均使用逗号作为分组分隔符,使用句点作为小数指示符。
CCA、CCB、CCC、CCD、CCE。定制货币格式。在列表中显示每个定制货币的当前定义格式。在“选项”对话框(“编辑”菜单,“选项”)的“货币”选项卡中定义这些格式
3、常用的检验:
独立性检验 (卡方验证)。此选项为表生成独立性卡方检验,该表的行和列中至少同时有一个分类变量。还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。
比较列的平均值 (t-检验)。此选项为表生成列均值相等性成对检验,该表的列中至少有一个分类变量且行中至少有一个刻度变量。可以使用 Bonferroni 方法选择是否调整检验的 p 值。此外,还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。最后,虽然均值检验的方差始终只基于多重响应检验的比较类别;但对于序数分类变量,可只根据比较的类别或所有类别估计该变量。
比较列的比例 (z-检验)。此选项为表生成列比例相等性成对检验,该表的行和列中至少同时有一个类别变量。可以使用 Bonferroni 方法选择是否调整检验的 p 值。还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。
4、常用的统计量:
均值。算术平均值;总和除以个案数。
中位数。一个值,大于该值和小于该值的个案数各占一半,第 50 个百分位。
众数。出现频率最高的值。如果存在出现频率相等的值,则显示最小值。
最小值。最小(最低)值。
最大值。最大(最高)值。
缺失。缺失值(用户和系统缺失值)计数。
百分位数。可以包含第 5 个、第 25 个、第 75 个、第 95 个和/或第 99 个百分位。
范围。最大值和最小值之差。
均值的标准误。取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于 –2 或大于 +2,则可以断定两个值不同)。
标准差。对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一个标准差范围内,95% 的个案在均值的两个标准差范围内。例如,在正态分布(方差的平方根)中,如果平均年龄为 45,标准差为 10,则 95% 的个案将处于 25 到 65 之间。
和。值的总和。
合计百分比。基于总和的百分比。适用于行和列(在子表中)、所有行和列(跨子表)、层、子表和整个表。
总计 N。无缺失值、用户缺失值和系统缺失值的计数。不包含手动排除的类别(用户缺失类别除外)中的个案。
有效 N。无缺失值的计数。不包含手动排除的类别(用户缺失类别除外)中的个案。
方差。对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方(标准差的平方)。
有效 N 百分比。即使在表中包含用户缺失类别,也会从简单百分比基数中移去具有用户缺失值的个案。
计数。每个表单元格中的个案数或多重响应集的响应数。
未加权的计数。每个表单元格中的未加权的个案数。仅在加权有效时,此统计量才与计数有区别。
列百分比。每一列中的百分比。子表的每一列中的百分比(简单百分比)的总和为 100%。通常仅在具有分类行 变量时,列百分比才有用。
行百分比。每一行中的百分比。子表的每一行中的百分比(简单百分比)的总和为 100%。通常仅在具有分类列 变量时,行百分比才有用。
分层行和分层列百分比。嵌套表中所有子表的行或列百分比(简单百分比)的总和为 100%。如果表包含层,则每个层中所有嵌套子表的行或列百分比的总和为 100%。
层百分比。每个层中的百分比。对于简单百分比,当前可见层中的单元格百分比的总和为 100%。如果没有任何层变量,则此百分比等于表百分比。
表百分比。每个单元格中的百分比基于整个表。所有单元格百分比都基于相同的个案总数且总和为 100%(简单百分比)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29