京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何利用SPSS做非参数检验
非参数检验是一个相当宏大的命题。由于实际情况的复杂多变,因此非参数检验包括了许多的各种各样的检验方法。之前我们提过,参数检验的使用条件是被检验的样本总体服从正态分布,而非参数检验的使用条件自然就是总体不服从或不确定是否服从正态分布。(实际上,这里要特别说明一下,尽管非参数检验的使用条件更宽松,但是考虑到精确性,不是特殊要求的话,我们还是尽可能的使用均值检验。)
比较常见的单样本非参数检验包括游程检验和单样本K-S检验。
游程检验:
它通常用于检测两个不同的观测值出现的次序是否具有随机性。举个例子,假如我们想知道每天来门诊就诊的人是否生病的次序是否随机,那么我们就使用游程检验。我们记录下来个案依次是否生病,比如是为1,否为0。然后我们就有了一个由0和1构成的变量列,
我们选择分析——非参数检验——旧对话框——游程,在主面板的检验变量列表里选入我们的0,1变量列。选项卡里边选择描述性,其他默认。割点可以全选。
输出结果看p值就可以了(我真的不想再重复怎么看p值了)。
单样本K-S检验;
这个就比较重要了。这个检验的目的在于观测样本的分布。哦,想想也知道很重要。只要我们想做相关和回归,那我们就最好用K-S检验来检查一下样本的分布。毕竟pearson相关系数有效的一个重要条件就是样本服从正态分布。
我们选择分析——非参数检验——旧对话框——1样本K-S,在主对话框的检验变量列表里边选入我们想检验分布的变量(比如一群病号的血细胞数),选项卡里勾选描述性和四分位数,其他默认。在检验分布的下边有四个供勾选的框框,这个要注意一下,常规指的就是正态分布,相等则是指均匀分布,勾选你想检验的分布(一般是正态分布)。确定以后就可以看结果了。
描述性统计量表会给你一些基本指标,帮助你感受这些数据。K-S检验表的p值会告诉你样本是否服从指定的分布,如果是的话,表里边还有一些其他的指标可以参考。
单样本非参数检验已经结束了(怎么这么少?),下边我们说一下独立样本非参数检验。
两独立样本非参数检验:
打开菜单分析——非参数检验——旧对话框——2个独立样本,在主面板里边检验变量选入检验变量,分组变量选入分组变量,选项卡中选入描述性,四分位数,其他默认。在检验类型里边有四个供勾选的框框,我们一一学习。
Mann-whitney 检验:
就是大名鼎鼎的秩和检验。
这个检验利用样本观察值得秩来推断两样本所在总体的分布是否相同(不晓得什么是秩的回去翻一遍你们的高数课本)。这是一个最常用的检验。举例,假设我们知道一组患病的人和不患病的人的血细胞数,想检查是否具有差异,那么我们就使用秩和检验,我保证没举错例子,这个例子确实也可以用独立样本t检验来做(希望大家还记得什么叫独立样本t检验),当然也可以用秩和检验来做。
它会给出描述性统计量,秩表,检验统计量表。在最后的一个表里边我们通过p值判断差异是否显著。
Moses极端反应检验:
它适用于实验条件导致两个不同方向的极端反应情况(多用于医学,比如有的药物会导致一部分病人好转的同时也会导致一部分病人恶化)。
它通过比较实验组和观察组,会告诉你是否产生了极端反应。(很神奇是不是?)
两样本K-S检验:
这个检验用来判断两个样本的分布是否相同。也是看p值哈。
Wald wolfowit游程检验:
用来检验两样本是否来自相同的总体。
注意:K-S检验适用于数值变量资料或者有序分类资料。
多个独立样本非参数检验:
打开菜单分析——非参数检验——旧对话框——K 独立检验,在主面板的检验变量选入想检验的变量,分组变量选入分组变量。
检验类型有三种
K-W检验:
用来判断各样本分别代表的总体是否一致,(相当于单因素方差分析),适用于数值变量和有序分类变量。结果会给出秩,检验统计量。通过p值判断差异性。若想在进行两两比较,那就要用到上边介绍的秩和检验来进行比较了。
中位数:
适用于数值变量资料。用来检验样本代表的总体中位数是不是相等。这个用途还是比较广泛的。
Jonckheere-Terpstra检验:
这个检验用来处理完全随机的资料,比如研究随着年龄增加,学习成绩是否也增加?这种有序分组的变量就用这个检验来检验。(我真有点懒得介绍这么冷门的检验的冲动,不过为了完整还是写一下吧。)
两相关样本非参数检验:
打开两个关联样本检验主面板,检验对里边选择两个相关变量,检验类型有四种。
Wilcoxon:
它用来检验两个变量的分布是否有差异。比较常用。比如一种药物治疗前和治疗后是否有差别?就用这个检验。
符号检验和wilcoxon差不多,也是检查差值的。
Mcnemar检验:
上边两个都是数值型的连续性资料,这个检验则用于配对计数资料,将两组人进行配对,观察他们的某个指标是否有差异。
边际同质性检验是mcnemar检验的一般化和扩展,用于多分类配对计数资料。比如检验甲观察的分类结果和乙观察的分类结果是否有差异。(分好多类)
多个相关样本非参数检验:
打开多个相关样本检验主面板,选入检验变量,检验类型一共有三种。
Friedman检验:
用于检验多个相关样本是否来自同一总体,是wilcoxon的扩展。
KendallW检验:
检验样本的一致性的好坏(不考虑分布的形状,仅考虑分布是否一致)。
Cochran Q检验:
用于二分数据时,是mcnemar检验的延伸,可以比较多个二分变量的比例的差异是否显著。
非参数检验大概就是这些内容了。和参数检验一样,这些检验的操作操作并不复杂,结果也不难判断,学习的难点在于记住这些不同的检验方法的适用的不同范围。需要多做一些练习,才可以巩固掌握住非参数检验的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27