京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来医疗大数据想象空间大
大多数医院已完成了配置各种辅助检查的软硬件安装和网络存储,并有超过半数的医院已配置了HMIS和CIS,医疗信息以分散和非结构化的形式存在于HMIS和CIS的各个模块中,如ERM,HIS,LIS等。对于传统的软件服务商来说,机会已经不大。待这些基础设施搭建完毕后,下一阶段医院将集中投资建立汇集各模块信息的集成平台,以及信息结构化技术上。医院智能化带来的投资机会将是如何利用医院数据实现医疗产业中的各方共赢。我们看好那些具有数据开放性、数据深度结构化的公司,以及具备权威可信数据应用规则的公司,和达到一定的医院覆盖率的公司。
76亿人次诊疗信息的价值
在医疗大数据和互联网 医疗被热烈讨论的今天,大部分移动医疗只是做一些边缘性的工作,所获取的数据也多为行走步数、锻炼频次和强度、心率血压血糖、膳食数据和药店或App购药信息,并没有能够切入医疗的核心流程。与其在这片红海里和诸多竞争者厮杀,不如把目光投向这块尚未被充分开发的处女地——医院信息。
根据卫计委公布的数字,2014年前11个月全国医疗卫生服务机构诊疗量(门诊和住院)达到67.7亿人次,其中三级医院接收了12.1亿人次。全年全国诊疗量估计超过76亿人次。这些医院信息有极大的价值,它涵盖了患者的人口统计学信息、诊疗信息、用药信息和费用信息,而这些信息又为流行病学研究、循证医学研究、医保控费标准制定、新险种开发和药品研究及精准销售提供了数据基础。
三级医院信息化率超过60%
医院信息主要储存在HMIS和CIS两大系统中。HMIS(HospitalManagementInformationSystem,医院管理信息系统)的主要目标是支持医院的行政管理与事务处理业务,提高医院的工作效率。HMIS偏重医院管理,以医院各级管理人员为服务对象。常见模块包括门诊收费、药房药库、功能科室、住院收费、财务查询、病案管理等。CIS(ClinicalInformationSystem,临床信息系统)的主要目标是支持医院医护人员的临床活动,收集和处理病人的临床医疗信息,为病人提供更好的服务。CIS偏重临床服务,以病人为中心,以医护人员为服务对象。常见模块包括门急诊挂号系统、医生工作站系统、护士工作站、影像归档和通信系统(PACS)、实验室系统(LIS)、药物咨询系统等。
现阶段大多数医院已完成了配置CT、MRI和网络存储,这些基础的软硬件相当于骨骼。有超过半数的医院已配置了HMIS和CIS,医疗信息以分散和非结构化的形式存在于HMIS和CIS的各个模块中,如ERM,HIS,LIS等,这些分散的模块相当于人体的肌肉。CHIMA发布的《2014-2015年度中国医院信息化状况调查》显示,在抽样调查的300余家三级医院中,一些使用频次最高的HMIS和CIS模块的整体渗透率高于60%。可以想象,在经济发达地区的三甲医院中,信息系统的覆盖率会更高。
技术、资金、政策驱动信息化迈进智能化
待这些基础设施搭建完毕后,下一阶段医院的投入会集中在建立汇集各模块的集成平台和将信息结构化为可搜索可统计的数据上。这也是最复杂最高级的一部分,相当于我们的大脑,它可以调动肌肉和骨骼,实时获取信息。最后利用大脑来产生智慧,更好的服务五个潜在的付费方:保险、医院、医生、药企和患者。
五个潜在的付费方各自有不同的需求。首先,政府和医保面临着医保资金压力和控费要求。对于医院来说,主要诉求是提高临床业务效率和保障医疗安全。医生则面临着医疗质量和科研考评的双重压力。商业保险需要大量的数据来设计面向病人和医生的新险种。药企希望能降低研发和营销成本并增加销售额。最后,患者希望得到优质医疗服务。能否研发出满足某一类或某几类付费方需求的产品是公司在医院信息智能化过程中立足的根本。
特别值得一提的是商业保险公司,作为政策驱动中的重要力量,商保的发展值得密切关注。向商业保险收费的模式虽然在中国尚不普及,但在美国已是成熟的商业模式。随着商业保险逐渐进入社保和医生多点执业的放开,未来不仅会有支付方式和覆盖范围的改变,还会有根据人群特点精准定价的可能,新的对于医生执业的险种也会应运而生,而这一切的基础都是能够对医疗过程和结果有准确及时的掌握。
数据、规则、覆盖率是三大竞争壁垒
那么是不是说在这些力量的推动下,信息系统的覆盖率上去了,医疗数据就可用了呢?并不是。医院的医疗数据必须要去掉患者姓名等敏感信息,经过标准化和结构化之后才能用于统计分析,并且只有当数据量达到一定量级之后才有统计分析的意义,而目前医院的信息孤岛问题显着,严重制约了数据的利用价值。信息孤岛产生的主要原因是医院对病人数据安全性有所顾虑,另外,医疗体制的预算和支付制度、病种编码、收费代码、以及药品和耗材数据库标准不一,也为打通数据增加了难度。加上同一家医院内HMIS和CIS各模块常由不同厂商提供,模块间的数据整合也很困难。我们认为,医疗大数据的门槛主要体现在以下三点:
1)数据的开放性、数据结构化的深度。
即是否能将医院内大量分散的信息整合,再把这些以文本形式存在的信息准确地识别并拆分,并且赋予这些词、词组和数字以逻辑关系。这种全结构化的数据库由于覆盖信息面广,数据结构程度高,可以按照病人、政府、医院、保险和药企的不同需求提供更精准的信息,做到“指哪打哪”,从而更好地帮助政策制定、市场营销和医疗服务。
2)数据应用规则的共识性和可信性。
数据本身不直接带来价值,还是要看最终大数据分析的应用场景。对于医学数据的应用来说,能否促动数据专家和医学专家参与到产品的设计中来,最终的产品不管是临床决策辅助系统还是医保控费系统,能否得到临床一线工作者和医药经济学家的认可,是区分产品优劣的关键点。有志于探索人工智能在医疗诊断方面应用的诸位英雄,除了团结一批临床工作者外,还需要在团队里配备人工智能的顶级专家。
3)达到一定的医院覆盖率,打通各级医院之间的孤岛。
单一医院的数据虽然有价值,但是由于它不能反应出一个个体连续的医疗记录,且样本量小(特别是对于不特别常见的疾病来说),往往不能作为决策参考二次利用,这时如能取得一定区域内多个医院的数据,不仅有“圈地”效应—医院替换掉现有的数据结构化应用是有成本的,还能扩大样本量,提升医疗数据变现的可能性。
医疗信息化未来想象空间巨大,玩家也不少。目前来看最难突破的是批量地铺设医院形成规模。我们认为比较有希望完成规模化的几种方式包括:通过帮助地方医保中心和商业保险机构做控费,以此倒逼医院应用其产品服务;从提高医院的医疗质量和帮助医生搞科研这样的刚需入手,促使医院采购其产品服务;以易结构化的化验单和病种(如肝炎慢性肾炎和康复)切入,在患者和医生之间形成互动,改善医疗资源的不合理分布,提高疗效和依从性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26