京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建行大数据风控筑网络欺诈防护墙
随着互联网业务的快速发展,金融科技创新为我们的生活带来了诸多便利,电子银行交易、网络购物支付不断普及。然而随着网络诈骗呈日渐高发态势,种类繁多,诈骗团伙分工明确,形成一条龙的产业链诈骗模式。不法分子大肆运用钓鱼网站、伪基站、木马植入等诈骗手段,通过积分兑换、淘宝退款、微信二维码、QQ?红包等工具,精心编造各种骗局,引诱客户上当受骗。伴随信息泄露的常态化和诈骗手法的日新月异,在线支付等网络欺诈风险已成为当前风险高发地。
在严峻的外部欺诈形势下,建行通过大数据智能化风控模型,打造“防、控、补”一体的电子银行全流程反欺诈体系,从事前、事中和事后主动加强网络金融风险管理,有效控制了外部欺诈风险,为网络金融用户的资金安全保驾护航。
事前防范——客户安全教育与反钓鱼成效显着
2011年开始,建行即利用网站、微博等平台进行客户安全教育宣传,增强客户对欺诈行为的识别能力。2015年,为塑造专业专注的服务形象,专门打造了建行反欺诈卫士卡通形象“蓝e卫士”,并在微信、微博、网站等互联网渠道,以“蓝e卫士”为主题对信息泄露、伪基站等当前典型高发的风险进行多轮次宣传教育,从如何识别钓鱼网站、保护好自己的个人信息和密码信息等角度进行专题宣传。同时在行内定期进行风险提示和预警,通过网点和短信等渠道开展客户安全教育和警示。通过一系列安全宣传活动,有效提升客户风险防范意识和技能。
针对不法分子通过钓鱼网站,窃取受害人输入的个人敏感信息,进而假冒受害者进行欺诈性金融交易获得经济利益的欺诈手段。2011年开始建行组建专门的反钓鱼队伍,开启24小时不间断的钓鱼网站主动搜索排查机制,不断分析钓鱼网页规律,做到查防结合,积极应对多样化、域名种类复杂化的钓鱼形势。2016年,建行自主创新开发的 “反钓鱼监测系统和方法”获得国家知识产权局授予发明专利,通过提升钓鱼网站监测系统的智能化水平,加大对高危、重点钓鱼网站侦测频率,钓鱼网站处理数量和效率不断提升。此外,建行与中国互联网应急管理中心、公安机关、腾讯、360安全中心等外部机构建立数据共享机制,鼓励行内行外积极举报钓鱼网站,并及时报送相关部门进行关停,努力为用户提供安全的网络支付环境。
事中监控——建立大数据智能风控
2011年11月,建行在国内率先建立网络金融反欺诈平台,依托全行统一、跨渠道的网络金融反欺诈系统,实现网上银行、手机银行、网上支付等电子渠道交易的7*24小时全面风险监控,对高风险交易实时阻断后进行人工分析、外呼核实、加黑名单等处理。一方面通过研究典型欺诈案例特征,并结合客户历史交易行为习惯,部署相应的控制策略和措施,并动态调整;另一方面通过位置服务、终端识别等新技术应用,持续优化提高监控策略的有效性,将高命中率的监控模型应用系统智能化自动防控。
通过充分利用现代化的信息技术和大数据分析,依托基于用户行为分析的风险引擎,实时快速分析网络金融渠道客户交易行为细节,建立电子化、流程化、规范化的管理方式,对海量的数据进行比对、甄选,主动识别异常行为,采集异常行为数据,进行实时分析判断,挖掘欺诈团伙作案特征和规律,根据风险形势变化,实时动态部署智能化监控策略,扩大风控覆盖范围和拦截半径,实现精准识别高风险网络金融交易,有效保障客户资金安全。
事后补偿——维护客户权益
通过借鉴国外先进银行经验,建行研究建立了网络金融风险快速追赔机制。对于客户遵守网络金融客户服务协议,已尽到一定安全和保管义务,但由于其被第三方非法入侵、盗用等原因导致直接经济损失的,采取积极应对措施,帮助客户挽回损失。与此同时,建行积极推进联防联控生态圈建设,加强与第三方商户联动,通过资源互换及风险形势共享,共同实现行业上下游风险联防。
2016年,为进一步丰富与商户风控合作的模式和内容,拓展商户合作新领域,丰富防控维度,建行创新研发第三方合作支付商户风险评级模型,采取针对性的一户一策差异化合作策略,依据商户风险评级模型的结果,结合商户自身风控完善程度及防控能力,对商户划分不同的合作等级,制定分类的合作方案,并将先进经验在合作商户之间交流,共享风险信息、联防联控。此外,总行、分行、网点共同参与打造建行、合作商户、公安机关等单位在内的联防联控合作机制,力求构建一个以银行为核心的应对互联网欺诈犯罪的防护生态圈。
建行集事前防范、事中监控、事后补偿三位一体的全面网络金融反欺诈风险管理体系,在保障客户资金安全方面的创新做法取得的良好成效,是建行服务民生、履行企业社会责任的有益实践,受到客户、媒体和社会各方面的广泛关注。建行将在人民银行、公安部门等大力支持下,主动与金融同业合作,积极加强企业级反欺诈防控能力建设,持续提升应对网络欺诈风险的能力,为保障客户权益,营造良好的金融生态发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21