京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建行大数据风控筑网络欺诈防护墙
随着互联网业务的快速发展,金融科技创新为我们的生活带来了诸多便利,电子银行交易、网络购物支付不断普及。然而随着网络诈骗呈日渐高发态势,种类繁多,诈骗团伙分工明确,形成一条龙的产业链诈骗模式。不法分子大肆运用钓鱼网站、伪基站、木马植入等诈骗手段,通过积分兑换、淘宝退款、微信二维码、QQ?红包等工具,精心编造各种骗局,引诱客户上当受骗。伴随信息泄露的常态化和诈骗手法的日新月异,在线支付等网络欺诈风险已成为当前风险高发地。
在严峻的外部欺诈形势下,建行通过大数据智能化风控模型,打造“防、控、补”一体的电子银行全流程反欺诈体系,从事前、事中和事后主动加强网络金融风险管理,有效控制了外部欺诈风险,为网络金融用户的资金安全保驾护航。
事前防范——客户安全教育与反钓鱼成效显着
2011年开始,建行即利用网站、微博等平台进行客户安全教育宣传,增强客户对欺诈行为的识别能力。2015年,为塑造专业专注的服务形象,专门打造了建行反欺诈卫士卡通形象“蓝e卫士”,并在微信、微博、网站等互联网渠道,以“蓝e卫士”为主题对信息泄露、伪基站等当前典型高发的风险进行多轮次宣传教育,从如何识别钓鱼网站、保护好自己的个人信息和密码信息等角度进行专题宣传。同时在行内定期进行风险提示和预警,通过网点和短信等渠道开展客户安全教育和警示。通过一系列安全宣传活动,有效提升客户风险防范意识和技能。
针对不法分子通过钓鱼网站,窃取受害人输入的个人敏感信息,进而假冒受害者进行欺诈性金融交易获得经济利益的欺诈手段。2011年开始建行组建专门的反钓鱼队伍,开启24小时不间断的钓鱼网站主动搜索排查机制,不断分析钓鱼网页规律,做到查防结合,积极应对多样化、域名种类复杂化的钓鱼形势。2016年,建行自主创新开发的 “反钓鱼监测系统和方法”获得国家知识产权局授予发明专利,通过提升钓鱼网站监测系统的智能化水平,加大对高危、重点钓鱼网站侦测频率,钓鱼网站处理数量和效率不断提升。此外,建行与中国互联网应急管理中心、公安机关、腾讯、360安全中心等外部机构建立数据共享机制,鼓励行内行外积极举报钓鱼网站,并及时报送相关部门进行关停,努力为用户提供安全的网络支付环境。
事中监控——建立大数据智能风控
2011年11月,建行在国内率先建立网络金融反欺诈平台,依托全行统一、跨渠道的网络金融反欺诈系统,实现网上银行、手机银行、网上支付等电子渠道交易的7*24小时全面风险监控,对高风险交易实时阻断后进行人工分析、外呼核实、加黑名单等处理。一方面通过研究典型欺诈案例特征,并结合客户历史交易行为习惯,部署相应的控制策略和措施,并动态调整;另一方面通过位置服务、终端识别等新技术应用,持续优化提高监控策略的有效性,将高命中率的监控模型应用系统智能化自动防控。
通过充分利用现代化的信息技术和大数据分析,依托基于用户行为分析的风险引擎,实时快速分析网络金融渠道客户交易行为细节,建立电子化、流程化、规范化的管理方式,对海量的数据进行比对、甄选,主动识别异常行为,采集异常行为数据,进行实时分析判断,挖掘欺诈团伙作案特征和规律,根据风险形势变化,实时动态部署智能化监控策略,扩大风控覆盖范围和拦截半径,实现精准识别高风险网络金融交易,有效保障客户资金安全。
事后补偿——维护客户权益
通过借鉴国外先进银行经验,建行研究建立了网络金融风险快速追赔机制。对于客户遵守网络金融客户服务协议,已尽到一定安全和保管义务,但由于其被第三方非法入侵、盗用等原因导致直接经济损失的,采取积极应对措施,帮助客户挽回损失。与此同时,建行积极推进联防联控生态圈建设,加强与第三方商户联动,通过资源互换及风险形势共享,共同实现行业上下游风险联防。
2016年,为进一步丰富与商户风控合作的模式和内容,拓展商户合作新领域,丰富防控维度,建行创新研发第三方合作支付商户风险评级模型,采取针对性的一户一策差异化合作策略,依据商户风险评级模型的结果,结合商户自身风控完善程度及防控能力,对商户划分不同的合作等级,制定分类的合作方案,并将先进经验在合作商户之间交流,共享风险信息、联防联控。此外,总行、分行、网点共同参与打造建行、合作商户、公安机关等单位在内的联防联控合作机制,力求构建一个以银行为核心的应对互联网欺诈犯罪的防护生态圈。
建行集事前防范、事中监控、事后补偿三位一体的全面网络金融反欺诈风险管理体系,在保障客户资金安全方面的创新做法取得的良好成效,是建行服务民生、履行企业社会责任的有益实践,受到客户、媒体和社会各方面的广泛关注。建行将在人民银行、公安部门等大力支持下,主动与金融同业合作,积极加强企业级反欺诈防控能力建设,持续提升应对网络欺诈风险的能力,为保障客户权益,营造良好的金融生态发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27