
建行大数据风控筑网络欺诈防护墙
随着互联网业务的快速发展,金融科技创新为我们的生活带来了诸多便利,电子银行交易、网络购物支付不断普及。然而随着网络诈骗呈日渐高发态势,种类繁多,诈骗团伙分工明确,形成一条龙的产业链诈骗模式。不法分子大肆运用钓鱼网站、伪基站、木马植入等诈骗手段,通过积分兑换、淘宝退款、微信二维码、QQ?红包等工具,精心编造各种骗局,引诱客户上当受骗。伴随信息泄露的常态化和诈骗手法的日新月异,在线支付等网络欺诈风险已成为当前风险高发地。
在严峻的外部欺诈形势下,建行通过大数据智能化风控模型,打造“防、控、补”一体的电子银行全流程反欺诈体系,从事前、事中和事后主动加强网络金融风险管理,有效控制了外部欺诈风险,为网络金融用户的资金安全保驾护航。
事前防范——客户安全教育与反钓鱼成效显着
2011年开始,建行即利用网站、微博等平台进行客户安全教育宣传,增强客户对欺诈行为的识别能力。2015年,为塑造专业专注的服务形象,专门打造了建行反欺诈卫士卡通形象“蓝e卫士”,并在微信、微博、网站等互联网渠道,以“蓝e卫士”为主题对信息泄露、伪基站等当前典型高发的风险进行多轮次宣传教育,从如何识别钓鱼网站、保护好自己的个人信息和密码信息等角度进行专题宣传。同时在行内定期进行风险提示和预警,通过网点和短信等渠道开展客户安全教育和警示。通过一系列安全宣传活动,有效提升客户风险防范意识和技能。
针对不法分子通过钓鱼网站,窃取受害人输入的个人敏感信息,进而假冒受害者进行欺诈性金融交易获得经济利益的欺诈手段。2011年开始建行组建专门的反钓鱼队伍,开启24小时不间断的钓鱼网站主动搜索排查机制,不断分析钓鱼网页规律,做到查防结合,积极应对多样化、域名种类复杂化的钓鱼形势。2016年,建行自主创新开发的 “反钓鱼监测系统和方法”获得国家知识产权局授予发明专利,通过提升钓鱼网站监测系统的智能化水平,加大对高危、重点钓鱼网站侦测频率,钓鱼网站处理数量和效率不断提升。此外,建行与中国互联网应急管理中心、公安机关、腾讯、360安全中心等外部机构建立数据共享机制,鼓励行内行外积极举报钓鱼网站,并及时报送相关部门进行关停,努力为用户提供安全的网络支付环境。
事中监控——建立大数据智能风控
2011年11月,建行在国内率先建立网络金融反欺诈平台,依托全行统一、跨渠道的网络金融反欺诈系统,实现网上银行、手机银行、网上支付等电子渠道交易的7*24小时全面风险监控,对高风险交易实时阻断后进行人工分析、外呼核实、加黑名单等处理。一方面通过研究典型欺诈案例特征,并结合客户历史交易行为习惯,部署相应的控制策略和措施,并动态调整;另一方面通过位置服务、终端识别等新技术应用,持续优化提高监控策略的有效性,将高命中率的监控模型应用系统智能化自动防控。
通过充分利用现代化的信息技术和大数据分析,依托基于用户行为分析的风险引擎,实时快速分析网络金融渠道客户交易行为细节,建立电子化、流程化、规范化的管理方式,对海量的数据进行比对、甄选,主动识别异常行为,采集异常行为数据,进行实时分析判断,挖掘欺诈团伙作案特征和规律,根据风险形势变化,实时动态部署智能化监控策略,扩大风控覆盖范围和拦截半径,实现精准识别高风险网络金融交易,有效保障客户资金安全。
事后补偿——维护客户权益
通过借鉴国外先进银行经验,建行研究建立了网络金融风险快速追赔机制。对于客户遵守网络金融客户服务协议,已尽到一定安全和保管义务,但由于其被第三方非法入侵、盗用等原因导致直接经济损失的,采取积极应对措施,帮助客户挽回损失。与此同时,建行积极推进联防联控生态圈建设,加强与第三方商户联动,通过资源互换及风险形势共享,共同实现行业上下游风险联防。
2016年,为进一步丰富与商户风控合作的模式和内容,拓展商户合作新领域,丰富防控维度,建行创新研发第三方合作支付商户风险评级模型,采取针对性的一户一策差异化合作策略,依据商户风险评级模型的结果,结合商户自身风控完善程度及防控能力,对商户划分不同的合作等级,制定分类的合作方案,并将先进经验在合作商户之间交流,共享风险信息、联防联控。此外,总行、分行、网点共同参与打造建行、合作商户、公安机关等单位在内的联防联控合作机制,力求构建一个以银行为核心的应对互联网欺诈犯罪的防护生态圈。
建行集事前防范、事中监控、事后补偿三位一体的全面网络金融反欺诈风险管理体系,在保障客户资金安全方面的创新做法取得的良好成效,是建行服务民生、履行企业社会责任的有益实践,受到客户、媒体和社会各方面的广泛关注。建行将在人民银行、公安部门等大力支持下,主动与金融同业合作,积极加强企业级反欺诈防控能力建设,持续提升应对网络欺诈风险的能力,为保障客户权益,营造良好的金融生态发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18