京公网安备 11010802034615号
经营许可证编号:京B2-20210330
继电商后,大数据“征服”移动游戏产业
随着云时代的来临,数据已经渗透到每一个行业和业务职能领域,成为重要的生产因素。其对社会经济生活产生的影响绝不限于技术层面,更本质上,它为我们看待世界提供了一种全新的方法,即决策行为将基于数据分析做出,而不是像过去更多凭借经验和直觉做出。最直观的感受就是购物网站基于海量数据的掌握与分析,为用户定制个性化、专业化的服务以及精确化的广告推广。在移动游戏产业中,这种数字行为则表现的更为彻底。
大数据
掌握数据=抓住用户
游戏行业竞争激烈,超90%的淘汰率让很多游戏产品沉寂沙场,为了让游戏脱颖而出,除了提供更加优质的产品外,更关键的是要找到用户并且抓住用户,毕竟玩家喜爱才是王道。通过利用基于大数据对玩家进行有针对性的画像,并对用户画像数据、用户行为和偏好数据和用户网络轨迹数据等进行分析,玩家当下的喜好趋势将以数据的形式客观的展现出来,到底是卡牌游戏还是RPG游戏更受欢迎?什么样的玩法更能被玩家接受?该类型的问题将会迎刃而解,这种情况下,游戏产品才能更加从容的投玩家之所好。
大数据一方面推动着游戏内容更加注重用户体验,另一方面也能检测出各个渠道推广的质量。通过大数据的方法,我们可以实现对不同渠道效果的评估,利用数据模型搜集用户的渠道行为,从而分析出相应的结论,掌握每个渠道的用户接收程度,发现渠道真正的质量。同时也发现渠道推广的问题所在,重新调整渠道推广方案,有利于更好的找到用户。
腾讯互娱就十分重视大数据,搜集了大量的游戏数据,除了游戏本身的数据和平台的数据外,还十分关注外部数据,比如百度指数和网吧的点击率。他们认为百度指数代表了市场的热度,代表了用户的关注度,而网吧点击率则代表了用户群体对游戏前期的关注度。通过数据的分析可以量化衡量游戏的市场前景与效果,从而对游戏进行整体的改善。游族网络自成立以来90%的产品成功率也绝不是偶然,其推行的大数据战略是游戏成功的必然因素,数据让游族了解到什么才能吸引到用户,才能创造出游族出品必属精品的“游族现象”。
数据提升移动游戏运营效率
互联网产品都是需要进行运营的,针对产品进行内容建设、用户维护和活动的策划,从而持续实现产品的价值。产品的运营其实是一个价值的传递过程,价值的传递需要依据用户进行。在大数据时代,数据可以更好的实现推动产品的运营。在大数据应用匮乏之前,游戏的运营大多都是群体式运营,采用粗放的运营模式,游戏的运作、调整显得非常迟钝,严重影响游戏的市场反响。利用大数据,则能够真正触及到每个个体用户,由粗放的群体式运营转变为针对每一个个体的精准运营,一方面可以节省运营成本,另一方方面也可以真正做到以用户为核心。
数据精确游戏运营具体表现在针对核心用户体验改善和产品的推广,在大数据的帮助下,发行商能够真正做到了解用户想要什么和游戏市场的规则变化,利用市场手段调整游戏运营手段,更好的被用户所接受。与百度游戏合作的游戏品牌商就已经切实感受到大数据的好处了,通过百度大数据的分析,游戏品牌商可以清楚的知道玩家的喜好,可以针对不同的用户、不同的地区开展不同的推广与运营手段。另外,百度大数据还提供针对品牌建设的评估工具,让游戏品牌商清晰的明白自身品牌的市场影响力。百度为国际游戏《激战2》进行中国市场推广时,利用大数据对用户人群进行画像分析策略提供,最终实现推广期日检索量最高峰达40万次;仅预售期间,就售出了超过50W份激活码。
游族网络游戏《女神联盟》海外成绩斐然,这种成功不仅仅实现在几个核心国家,而是在海外一百多个市场都表现非常不错。大数据帮助游族了解各地玩家的喜好、游戏市场的运作规则和渠道推广等,前瞻性的把握市场需求变化,依据这些数据具体市场具体分析,采用不同的运营手段来打入市场。我们可以看到,《女神联盟》这款游戏在地区的形象、玩法、市场推广手段都是不同的,成功实现了游戏的对外输出。
精准数据成为产业运作“中枢”
大数据指的是在互联网时代大量数据的集合,并且呈现出四个显著的特点,即Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。大数据虽然蕴含巨大的价值,但不仅仅意味着简单将大量数据整合起来,其价值密度低就决定了表象的数据是没有任何价值的。谷歌的GooglePlay可以同时向190个国家分发应用,拥有7.5亿庞大玩家群体,再加上覆盖70%以上优质玩家的视频平台YouTube,可以说是真正的“大数据”,但如果缺乏对这些数据根据需求进行分门别类的管理与分析,那摆在我们面前的这些数据的意义仅仅只是“大”而已。因此大数据的核心就在于通过对数据的处理与分析,提炼出数据蕴含的现象与规律,最终运用到生产生活中去。
游族网络在并购MOB后,大数据战略在具备了数据挖掘能力后,又提升了精准度及分析能力。MOB不仅覆盖20亿移动用户,还能将设备与社交ID精准匹配,用户分析精准度显著提升,基于大数据统计下指导不同业务的具体策略,在节省资源的同时,强化产品的竞争力,给企业的发展提供源源不断的动力。
数据提纯需要数据的筛选和合理的算法,将数据的挖掘能力与分析能力相结合,将移动游戏市场数据与游戏产品数据相结合,从而更好的掌握市场发展态势与用户需求结构,有利于明晰当前移动游戏市场的发展方向,为企业的发展提供良好的信息支持。另一方面来讲,数据的支撑可以给产业的发展提供更加直接的论据,从而改变从研发到发行整个产业链条的市场行为,有利于推动产业内容升级,真正做好指挥棒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22