
继电商后,大数据“征服”移动游戏产业
随着云时代的来临,数据已经渗透到每一个行业和业务职能领域,成为重要的生产因素。其对社会经济生活产生的影响绝不限于技术层面,更本质上,它为我们看待世界提供了一种全新的方法,即决策行为将基于数据分析做出,而不是像过去更多凭借经验和直觉做出。最直观的感受就是购物网站基于海量数据的掌握与分析,为用户定制个性化、专业化的服务以及精确化的广告推广。在移动游戏产业中,这种数字行为则表现的更为彻底。
大数据
掌握数据=抓住用户
游戏行业竞争激烈,超90%的淘汰率让很多游戏产品沉寂沙场,为了让游戏脱颖而出,除了提供更加优质的产品外,更关键的是要找到用户并且抓住用户,毕竟玩家喜爱才是王道。通过利用基于大数据对玩家进行有针对性的画像,并对用户画像数据、用户行为和偏好数据和用户网络轨迹数据等进行分析,玩家当下的喜好趋势将以数据的形式客观的展现出来,到底是卡牌游戏还是RPG游戏更受欢迎?什么样的玩法更能被玩家接受?该类型的问题将会迎刃而解,这种情况下,游戏产品才能更加从容的投玩家之所好。
大数据一方面推动着游戏内容更加注重用户体验,另一方面也能检测出各个渠道推广的质量。通过大数据的方法,我们可以实现对不同渠道效果的评估,利用数据模型搜集用户的渠道行为,从而分析出相应的结论,掌握每个渠道的用户接收程度,发现渠道真正的质量。同时也发现渠道推广的问题所在,重新调整渠道推广方案,有利于更好的找到用户。
腾讯互娱就十分重视大数据,搜集了大量的游戏数据,除了游戏本身的数据和平台的数据外,还十分关注外部数据,比如百度指数和网吧的点击率。他们认为百度指数代表了市场的热度,代表了用户的关注度,而网吧点击率则代表了用户群体对游戏前期的关注度。通过数据的分析可以量化衡量游戏的市场前景与效果,从而对游戏进行整体的改善。游族网络自成立以来90%的产品成功率也绝不是偶然,其推行的大数据战略是游戏成功的必然因素,数据让游族了解到什么才能吸引到用户,才能创造出游族出品必属精品的“游族现象”。
数据提升移动游戏运营效率
互联网产品都是需要进行运营的,针对产品进行内容建设、用户维护和活动的策划,从而持续实现产品的价值。产品的运营其实是一个价值的传递过程,价值的传递需要依据用户进行。在大数据时代,数据可以更好的实现推动产品的运营。在大数据应用匮乏之前,游戏的运营大多都是群体式运营,采用粗放的运营模式,游戏的运作、调整显得非常迟钝,严重影响游戏的市场反响。利用大数据,则能够真正触及到每个个体用户,由粗放的群体式运营转变为针对每一个个体的精准运营,一方面可以节省运营成本,另一方方面也可以真正做到以用户为核心。
数据精确游戏运营具体表现在针对核心用户体验改善和产品的推广,在大数据的帮助下,发行商能够真正做到了解用户想要什么和游戏市场的规则变化,利用市场手段调整游戏运营手段,更好的被用户所接受。与百度游戏合作的游戏品牌商就已经切实感受到大数据的好处了,通过百度大数据的分析,游戏品牌商可以清楚的知道玩家的喜好,可以针对不同的用户、不同的地区开展不同的推广与运营手段。另外,百度大数据还提供针对品牌建设的评估工具,让游戏品牌商清晰的明白自身品牌的市场影响力。百度为国际游戏《激战2》进行中国市场推广时,利用大数据对用户人群进行画像分析策略提供,最终实现推广期日检索量最高峰达40万次;仅预售期间,就售出了超过50W份激活码。
游族网络游戏《女神联盟》海外成绩斐然,这种成功不仅仅实现在几个核心国家,而是在海外一百多个市场都表现非常不错。大数据帮助游族了解各地玩家的喜好、游戏市场的运作规则和渠道推广等,前瞻性的把握市场需求变化,依据这些数据具体市场具体分析,采用不同的运营手段来打入市场。我们可以看到,《女神联盟》这款游戏在地区的形象、玩法、市场推广手段都是不同的,成功实现了游戏的对外输出。
精准数据成为产业运作“中枢”
大数据指的是在互联网时代大量数据的集合,并且呈现出四个显著的特点,即Volume(数据体量大)、Variety(数据类型繁多)、Velocity(处理速度快)、Value(价值密度低)。大数据虽然蕴含巨大的价值,但不仅仅意味着简单将大量数据整合起来,其价值密度低就决定了表象的数据是没有任何价值的。谷歌的GooglePlay可以同时向190个国家分发应用,拥有7.5亿庞大玩家群体,再加上覆盖70%以上优质玩家的视频平台YouTube,可以说是真正的“大数据”,但如果缺乏对这些数据根据需求进行分门别类的管理与分析,那摆在我们面前的这些数据的意义仅仅只是“大”而已。因此大数据的核心就在于通过对数据的处理与分析,提炼出数据蕴含的现象与规律,最终运用到生产生活中去。
游族网络在并购MOB后,大数据战略在具备了数据挖掘能力后,又提升了精准度及分析能力。MOB不仅覆盖20亿移动用户,还能将设备与社交ID精准匹配,用户分析精准度显著提升,基于大数据统计下指导不同业务的具体策略,在节省资源的同时,强化产品的竞争力,给企业的发展提供源源不断的动力。
数据提纯需要数据的筛选和合理的算法,将数据的挖掘能力与分析能力相结合,将移动游戏市场数据与游戏产品数据相结合,从而更好的掌握市场发展态势与用户需求结构,有利于明晰当前移动游戏市场的发展方向,为企业的发展提供良好的信息支持。另一方面来讲,数据的支撑可以给产业的发展提供更加直接的论据,从而改变从研发到发行整个产业链条的市场行为,有利于推动产业内容升级,真正做好指挥棒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01