京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从内部实践讲起 联想也谈大数据
继云计算在各行各业相继落地后,大数据与我们的关系也在日益密切。在笔者过往进行的客户采访中,有不少用户都表示当下正在进行一些大数据相关的工作,包括对各个业务平台的打通,数据共享、收集以及分析等,这也意味着大数据正在从“阳春白雪”走向“下里巴人”。
在近日召开的2015中国国际大数据大会上,包括移动、联通、电信及联想等在内的运营商及IT企业均分享了其在大数据领域的探索和布局。从它们身上能看到相同的是,几乎所有企业都意识到了大数据所蕴含的价值;不同的是,各企业在挖掘其价值的过程中,所处的阶段不尽相同,比如有的已经处于利用所挖掘的数据价值来提升业务的阶段,而有的还处于建模型、处理、分析数据的阶段。
大数据落地指日可待
而这可以说也是当前大数据发展现状的一个缩影,联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹会后在接受采访时表示,从兴起到今天,大数据的发展经历了所有新技术落地的各种必要过程,包括从概念认知、日渐接受,到今日的逐渐落地。这其中,大数据的价值归根结底在于帮助企业提升商业价值,这点已经毋庸置疑。
黄莹举了联想自身的例子来说明。他说,两年前,在联想内部推广大数据的时候,还要跟业务主管介绍大数据是干什么用的。但是从去年开始,各业务部门已经开始从一些小的应用着手进行尝试,到今年,大家对大数据已经完全没有怀疑,包括联想各个业务部门都有大数据方面的项目在进行。
这其实十分类似于人们接受一个新鲜事物的过程,开始不了解,有怀疑、质疑,逐渐了解后,进行尝试,当获得、或看到好处时则会大力推广。现在大数据所处的发展阶段就已经属于后者,用户不再追问大数据是什么,而是问我们怎么利用大数据。
具体来说,联想作为一个典型的制造企业,生产的产品有成百上千种,如何做到以客户为中心,其中很重要的一条就是聆听客户需求,及时改进,这也是联想内部做大数据研究的一个主要因素,即帮助其更好地改进产品。当然,一开始的进展也没有那么顺利,据黄莹介绍,最开始推广大数据的时候,也只有几个产品经理在用,不过随着时间的推进,越来越多的产品经理意识到了价值所在,到现在该大数据平台已经有成百上千个产品经理在使用。
对此,联想集团研究院大数据总监郭炜也表示,事实证明,现在大数据已经过了喊口号、炒概念的阶段,其现在与前沿的技术创新和实际应用的结合是非常快的,以前一个东西变成产品可能需要几年,现在一旦技术完备,真正应用到企业也就是几个月的时间。
利用大数据,最关键的是什么?
要分析这个首先还是要看看大数据都涉及哪些技术层面,粗略地概括,大致主要包括三个阶段:数据收集、收据分析和数据呈现。毫无疑问,这其中首先要解决的就是数据来源问题,然后才有分析、呈现、利用。以联想自身为例,一方面其将内部的数据孤岛打通,形成数据共享平台,另一方面利用爬虫技术去搜集互联网上关于联想的各种意见、建议,也就是说企业内部数据和外部来自用户的评论共同构成了数据源。
接下来要做到就是分析、呈现,有关这部分其实不用多讲,每天都有各种新的技术出现,这也不是难题。无论是黄莹还是之前的客户采访,但凡被问到这类问题,他们给出的答案都是一致的,那就是解决了数据来源问题,其他都好办,可见大数据、大数据,说到底首先得有数据。其次,才是分析、利用。
虽然在采访中,两位发言人都更多提及的是大数据在联想内部的实践,但截止当前,联想已经把这套实践经验总结、提炼,形成了面向用户的最终解决方案,在2015中国国际大数据大会的现场,联想也进行了展出。
都说实践才出真知,联想的亲身体验想必也能为用户带去价值,帮助用户少走弯路。更多关于联想大数据相关的解决方案,这里不详细展开,有兴趣的朋友可自行去查阅、咨询。总之,大数据所蕴藏的价值毋庸置疑,但在发掘、利用大数据价值的道路上,还是有很多沟沟坎坎要迈过的,找一个有实践经验的供应商,想必不是坏事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01