
大数据助力部队管理模式创新
大数据时代的来临,给各行各业带来了数据使用方式的根本性转变,也为部队管理提供了全新理念方法,部队管理应充分运用大数据技术、发挥大数据优势,推动建立用数据决策、用数据管理、用数据创新的全新管理模式。
大数据为部队管理带来一系列机遇
大数据能为部队管理提供更有力的数据支撑。长期以来,受限于数据采集、存储和管理,从纷繁复杂的各类管理数据中总结梳理规律性的认知,更多依赖于随机采用少量数据分析,其全面性、系统性、准确性都大打折扣。大数据则能提供海量的数据支持,使管理者可用的数据成几何数增长,有时甚至可以占有与某个特别现象相关的所有数据,从而实现管理调查从抽样数据到全样本数据的转变。
大数据能为部队管理带来更具前瞻性的分析预测。大数据的核心就是预测,它能把数学算法运用到海量数据上来预测事情发生的可能性,从而有效避免以往仅靠经验分析预测带来的以偏概全。这种基于大数据技术的预测能力,对部队各方面管理具有非常大的现实意义。
大数据能及时发现部队管理中的新情况新问题。科学管理的前提是遵循规律,遵循规律的前提是发现规律。随着形势任务发展,部队管理不断出现新情况新问题,管理者如果凭借个人经验或采取随机取样的方法来分析判断,往往会“一叶障目,不见泰山”,难以达到理想效果。相比而言,大数据则能让数据“说话”,从浩瀚的数据中不断发现新的现象和规律,为有针对性地做好工作奠定基础。
大数据能更加有效地抓住人这个管理重点。大数据时代,每个人几乎都是透明性存在的,所留在数据空间的痕迹,反映着其性格、偏好、意愿等。一旦有必要,管理者通过对有关数据的收集和分析,便能全面准确了解和把握官兵的需求特征、兴趣爱好、行为倾向及个性心理等,从而具备预判官兵未来行为的可能。
借助大数据创新部队管理模式并非一蹴而就
当然,从现实情况看,借助大数据创新部队管理模式,也需解决一些问题和挑战。
破解“用”数据意识不牢的问题。从历史上看,我军重谋略轻数据的传统客观存在,无论战时打仗还是平时管理,多半聚焦于谋略与经验,鲜讲数据和技术。时至今日,尽管也知晓数据分析的科学有效,但仍摆脱不了经验主义束缚,经常是讲的多做的少。个别看似很重数据分析的工作,实则是冠大数据之名而无大数据之实。因此,真正将数据分析作为一种打仗和管理模式立起来,还有很长一段路要走。
完善“建”数据的路径机制。经过多年发展特别是信息化建设,各部队已积累了大量基础数据,为科学管理提供了有力支撑。但因缺乏统一的数据收集和共享机制,采集的数据规模不等、格式不一、质量各异,往往是量大质劣,总体发展很不平衡,难以实现有效整合和共享共用,聚指成拳效果不明显。由此,有必要加强数据搜集和共享路径探索及相关机制的建立。
解决“读”数据专业人才缺乏的问题。用好大数据,“建库”是基础,“判读”是支撑。长期以来,部队管理工作以管人为重心,方法上以定性分析为主、定量分析为辅,而大数据时代的部队管理,核心是借助各类大数据分析软件,通过数学建模进行定量分析,管理者须具备数学、统计学、计算机技术等方面能力,否则就会在茫茫数据中迷失方向,专业人才短缺正是目前制约部队管理进入大数据时代的瓶颈所在。
“管”数据的法规还不健全。大数据是一柄双刃剑,运用得当能极大提高工作效率,管理不善也会带来隐患。目前,有关大数据的政策法规和安全防护措施还没有建立起来,存在数据被盗窃、篡改以及个人隐私泄露等安全隐患。
借助大数据推动部队管理创新
我们应以更加开放、前瞻、务实的姿态,积极主动迎接大数据时代的到来,推动部队管理创新发展。
转变观念给予高度重视。大数据不仅是一场技术变革,更是一场思想变革。可以说,谁掌握了“制数据权”,就掌握了“制信息权”。谁在大数据领域落后,就终将被这个时代淘汰。应牢固树立大数据理念,紧紧抓住数据这个管理核心要素,逐渐建立以数据为基础的管理体系,实现部队管理以定性分析为主、定量分析为辅向以定量分析为主、定性分析为辅的转变。
博采众长强化顶层设计。目前看,美国等发达国家在大数据的研发使用上起步早、投入多、见效大,一些大企业在这方面也已走到了前面,可以通过面向社会招标采购的形式,引入先进的大数据分析软件,在此基础上消化吸收,研发符合部队管理实际的软件工具。尤其要重视借鉴成功的商业大数据管理理念,强化大数据管理顶层设计,制定路线图,明确发展目标和路径,有条不紊积极推进。
统一标准加强数据管理。强化数据观念,广开收集渠道,加大收集力度,实现数据收集数量与质量的同步跃升,对于涉及部队管理重点内容、对象、环节等基础性信息,要尽可能多而全地收集录入。成立跨部门的数据管理机构,制定出台数据标准,形成明确的、一致的标准样板,即创建“本体”,以改变当前数据标准不一、互不兼容等问题。打破单位、部门、行业等壁垒,做到全数据上线、分层级管理、按权限使用,既满足预期的用户及需求,也能用于无法预期的用户及需求,真正实现数据的共建共管和共享共用。
多措并举建强人才队伍。大数据专业人才,不仅要熟悉部队管理业务,还要具备数学、统计学和计算机等方面知识,要高度重视人才队伍建设,加紧制定和实施有针对性的大数据人才培养计划,培养一批既懂部队管理又懂数据分析的人才,为我军大数据的管理提供智力支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01