京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当房地产遇上大数据
最近,北京、上海等城市的房价又开始了新一轮的疯涨,很多买房人在疯抢各种楼盘。可是,房地产生意也不并不是大家想象中的那么好做,毕竟房地产涉及到非常大的投资,一旦没有根据用户需求提供合适的户型、配套等服务,或是无法让潜在客户了解房产信息,都可能导致房地产项目满意度下滑,销售受阻。
国内某大型房地产企业,重视提供优质项目,致力于打造长远品牌。为将房地产项目的各项决策与用户需求精准匹配,从而打造出更优质的房产,该企业找到了百分点,通过百分点的大数据分析深度洞悉客户需求,并根据目标客户的需求拟定市场及项目策略,有效地支持项目建设和销售。
房地产进入个性化时代 数据搜集与分析却成大问题
越来越多的人不仅满足要有房,还希望房子满足个性化需求,在户型、装修、物业服务也都要满足自己的标准和品位。而该房产企业的项目跟其他竞品项目相比,存在同质性严重的问题,如果要改变这种状况,就必须广泛搜集客户需求,而这显然是一个非常困难的巨大工程。
首先,传统的数据搜集方式不仅少,而且非常不精确。客户走访、调查问卷等方式是主要的数据搜集形式,但是这些方式受到内容设置的限制,以及受访人的状态、心理接受程度等因素影响,不能真实地反应受访人的实际情况。特别是对于房地产调查来说,不仅人均费用高昂(500元/份),很多人对此类问卷较为抵制,导致很难获得真实信息。另外,由于传统的调查样本量少,相关的误差会非常大。
其次,整理这些数据并形成最终结论也不容易。在传统的调查中,房地产企业搜集到的往往是零碎的数据,这些数据之间都有什么关联,如何来支撑实际的决策行为?这些都困难重重。
大数据技术让数据搜集、分析不再头疼
在看到传统数据搜集、分析方式存在的巨大缺陷,该房地产企业认识到大数据是解决问题的最好方式,并选择了与百分点合作,这不仅是因为百分点拥有5.5亿用户全网画像数据,还在于百分点具有强大的数据挖掘、建模分析、特征描摹能力,可以挖掘出真正高价值的信息。
本次合作中,该企业事先准备一定数量的第一方用户数据(例如已购房的用户数据,咨询过购房的用户数据等),与百分点的数据进行匹配。在匹配之后,百分点根据客户的业务需求将这些受众分为多个群体类别,然后分析每个群体在互联网上的购物、媒体浏览等偏好,从中挖掘出群体的特征,进行详细的描摹,最终生成用户画像报告。
为用户建设最满意的房
在百分点大数据分析投入到实际应用之后,该房地产公司项目建设和营销变得有据可依,清晰明了。
用户喜欢住什么房,我就建什么房:在利用百分点大数据工具形成详尽的用户画像之后,这些用户喜欢什么样的房就了然于心了。在筛选之后,该房地产公司不仅针对性地对房地产项目、户型、装修风格进行定制,还有的放矢地进行小区配套方面的投入,例如通过分析,该企业发现旗下某楼盘的意向客户,有很多是结婚不久、孩子还小的中青年群体,她/他们经常在网上购买婴幼儿奶粉、衣物等产品,因此该楼盘在户型上重点推出了2居中小户型、以及全南向阳光房等户型,而在相关配套上,幼儿园成为了必备,并且规定小区人车分流,保障幼儿安全。
用更少的钱,获取更多的新客户:销售代表电话轰炸式营销不仅骚扰客户,成本还非常高。在下一步计划中,百分点拟通过look-alike人群扩散模型,根据已购买及有意向消费者的特点,在百分点全网受众数据库中,找到更多相似的潜在受众,然后对这些受众进行精准营销,不仅降低了对客户的干扰,还能以最小的投入找到更多的意向客户。
提前预测用户对项目的偏好,提高利润率:好的营销不是满足用户的显在需求,而是满足其潜在需求,甚至引导用户需求。房地产行业同样如此,通过大数据解决方案的需求预测能力,百分点可以为该房地产公司提供更富前瞻性的项目建设以及营销策略,帮助其提升房产项目的收入与利润率,实现智能房产这一目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22