
女人与大数据:大数据时代就是女性的时代
大数据时代,就是女性的时代,女性在基因里就会计算大数据。
很多男性和孩子,其实一直奇怪女性这种特殊的能力。比如小时候你刚进家门,妈妈就以狐疑的语气马上说:“刘志军,你今天是不是没考好?”。比如你刚看一眼手机,老婆就笑:“是不是又是隔壁二狗约你打游戏?”。再比如你刚刚关起门打电话,女朋友一会儿就哭了:“你是不是又背我出去找小三?”。
她们有的时候猜对了,有的时候猜错了。但是总体,正确率高于随机水平。她们错的时候,男人就撇撇嘴,你们女人就爱胡思乱想;她们对的时候,男人就说,女人就是一种敏感的动物,可能感觉器官就敏锐一些。
不管怎么说,这些瞎猜,总体正确率高于随机水平这点,也让男人非常害怕。为了适应这点,男性也形成了相当强的反侦察技能。
有一些研究指出,女性大脑的白质(用于连接各种区域的解剖组织)高于男性。所以把事物连接在一起想象的能力强。也有最近研究表明,女性对“日期”记忆能力强于男性,所以能记住所有生日,纪念日,甚至不重要朋友的一些重大日子。
不管这些结果的真实性,我觉得,这都不是女性最卓越的能力。女人最卓越的能力是长期追踪一些看似不重要的数据,形成自己的“基准线”和“模式”。一旦这些数据点的模式,显著不同于她所熟悉的基准线,她就知道反常。女人在日常生活中不考虑什么因果关系和相关性的区别,俺们信奉的原理就是:“事出反常必有妖”。
讲大数据的人经常讲林彪的例子。林彪打完一场战役,就认真记录一些非常细节不重要的数据,比如缴获枪支,长枪和短枪的比例,战俘的年龄层次,缴获的粮食是高粱还是小米等等,都事无巨细记在本子上面。别人都笑他。但是后来,他就用这些数据来判断哪个地方是敌军指挥部。
女人的干的事情,基本雷同。一个女孩A暗恋男孩B,但通常不直接联系,过了两天我问她要不要叫他一起吃饭,她说,他正在打球。我说你怎么知道?
她说,男孩B平时是早上8点在Gmail邮箱上线,8点半呈现Away状态,这是他出去买咖啡早饭了。9点再次上线后Busy,这是在工作,12点半再次Away就是午餐,晚上一直在线,可能是读文章或打游戏。其哥们C,早上十点上线,全天在线,然后夜里2点还在线上,这是一个晚睡晚起的男生。其另一个哥们D,全天Busy,但是大多数时间都在。但是重要的模式是,每星期有2-3天,他们一起离线或者Away 3-4个小时。结论:他们在一起打球。
我听了以后跪服。我说,你真太棒了,这就是大数据。有人说,真是闲的无聊,难道不能直接问?生活里的小事,随便问问当然无所谓,但是在社交场合不合适问的事情,用大数据能得到答案,难道不是一种卓越能力吗?
最近出了几篇论文,通过数据挖掘人在社交网络上点赞的规律,来预测人的智商,兴趣,等等。其实这种事情,女性经常干。哪个女生敢说,自己没在party之前把所有宾客都Google了个底朝天?在刚开始谈恋爱的时候,把对方的博客,微薄,Facebook,亲朋好友的博客,微薄,Facebook翻了个底掉?
反正我干过:)。信息时代嘛,我干这种事情毫无羞耻心并且认为丝毫不是浪费时间。交朋友,谈恋爱,是比买车买房更重要的事情,产生更深远的影响,所以做背景调查相当重要,对于陌生人尤其重要。
话扯远了,最后扯回到,妈妈当初是怎么看出你考试没考好的,老婆是怎么看出你要出去打游戏,女友怎么怀疑你找了小三的。她们每天都用眼睛观察你眼睛的注视,看了什么,盯了几秒,你洗脸刷牙需要多长时间,多长时间刮一次胡子,你把拖鞋放在哪里,在饭桌上说多少话。
如果你哪天,盯着手机的时间比以往长,牙膏突然挤到水池边,没到重大节日突然刮胡子,拖鞋突然放得很整齐,在饭桌上一句话没有,饭后很快很轻很轻地进了另一间屋子,又很轻很轻把门关上。
这些模式集合在一起,就是“事出反常必有妖”。小时候当你有鬼心思,你妈妈总是第一次猜到,她总是得意的说:“你是我生的,你怎么想我还不知道?”。实际真正的trick并不是她生了你。
是因为她爱着你,她一直细致入微地观察着你,精神上记录着你的各种生物信号,才能达到如此神乎其神的程度。
没有任何传感器和算法能达到母亲的程度,但希望未来能有传感器和算法近似于母亲的贴心,达到数据时代为人带来的真正便利。
我脑子真的不行了,马上要去睡觉。说两句总结,
第一,女性要相信自己入微的观察和大数据能力,并且把这种能力用在更高水平的地方,一定能在这个时代有更强大竞争力。
第二,妈妈,我爱你。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29