京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让人看到更真实的历史
大数据研究不仅能预测人未来的行为,也能让我们更清晰地看清过往的历史。斯坦福大学Clark教授说,“历史只有工业革命前后之分,其他的历史细节虽然很有意思,但不关键。”为什么呢?一方面,世界人均GDP在公元1800年前的两三千年里基本没有变化,工业革命之后才逐渐上升;另一方面,工业革命之后人类生活方式、社会结构、政治形态以及文化内涵都有了本质性变革。
公元元年时世界人均GDP大约为445 美元 (按1990年美元算),到1820年上升到667美元,1800多年里只 增长 了50%。同期,西欧国家稍微好一些,但也只是从公元元年的450美元增长到1820年时的1204美元,英国作为工业革命的发源国也大致如此。而从1820年到2001年的180年里,世界人均GDP从原来的667美元增长到6049美元。由此可见,工业革命带来的收入增长的确是翻天覆地的。
工业革命之前的人类既然没有实现财富增长,那么他们都在忙些什么呢?那个时期,不管是东方还是西方,有很多改朝换代,但Clark教授认为,“用不着被那些表面的东西所误导”,在工业革命之前,人类社会一直没有走出“马尔萨斯模式”,即在生产率不变的情况下,自然灾害或战争导致人口死亡,使接下来的人均收入增加,为生育率上升、人口增长提供条件,可是人口增长后,人均土地和人均收入会减少,使生存挑战越来越大,又导致战争的发生并使接下来的人口又减少,在这个周期中循环。
Clark教授通过对英国人遗嘱研究发现,在工业革命之前,英国人的生育率跟财富水平高度正相关:越有钱的夫妻,小孩数量越众。在16世纪期间,最富的三分之一英国人死时平均还有4至6个小孩健在,中等财富的英国人离世时平均有3.5到4.5个小孩健在,而最穷的三分之一英国人离世时只有不到3个小孩活着。到18世纪末,基本情况仍然是越富有的家庭小孩数越多,只是每家的小孩数量都降到4个以下,并且各财富阶层间的小孩数量差距明显缩小。
工业革命到来之后,小孩数量就基本跟财富水平没有关系了。而从1880年到1980年的100年间,情况正好反过来:越穷的英国人,小孩数量反而越多,完全改变了工业革命之前“适者生存”、“有钱者生存”的规律。穷者还是追求小孩数量,而富者更注重小孩的质量和自己的生活品质。Clark教授发现工业革命之后,虽然穷人的小孩数更多,但富人的平均寿命更长,这可能是后者更侧重生活质量的结果。
Clark教授的研究结果对中国的历史研究也很有启发。公元元年时中国的人均GDP为450美元(跟西欧一样),到洋务运动的起点时也仅为530美元。在人们的基本生活水平几千年没有变化的情况下,那些制度与文化体系是经历了几千年的检验,还是只经历了几年、一两个朝代的考验,并不存在本质性差别。从这个意义上讲,在收入与生活方式处于静态不变的状况下,那些朝代到底叫“汉朝”、“隋朝”、“唐朝”、“宋朝”,还是“元朝”、“明朝”或“清朝”,这些细节意义不是那么大,至少没有原来我们强调的那么大。
鸦片战争敲开了国门,洋务运动把工业革命请进中国,由此真正把引发社会变革的工业技术和相配思维方式带入中国,让中国有机会走出困扰社会几千年的马尔萨斯式陷阱,结束过去重复的静态朝代更替周期。
玉米和红薯曾这样影响中国
瑞典斯德哥尔摩大学贾瑞雪教授研究中国历年农民暴动起义跟自然灾害的关系。她的量化历史研究发现:在16世纪玉米、红薯进中国前,干旱年里平均每12个州府地区就有一个发生农民起义或暴动,而玉米、红薯于16世纪引进中国后,即使在干旱年,每40个州府才有一个发生农民起义。主要原因在于这些“新世界”粮食作物对水稻有很强的补充作用。从这个意义上说,虽然红薯、玉米不像大米那么受欢迎,但是在干旱年份,如果是在暴动起义和红薯、玉米之间做选择,农民更愿意选择后者。
哥伦布发现美洲后,西班牙人先是从现在的墨西哥把玉米、红薯和土豆带回欧洲。按照学者估算,仅土豆一项就使欧洲人口在1700-1900年两百年间增长25%,使欧洲城市化率从27%到35%,并帮助催化了工业革命的发生。
这些作物随后传入中国。香港科技大学龚启圣教授和他的合作者要研究的问题主要有三个:第一,到底是因为引进了这三项农作物使中国人口从1500年的1.3亿上升到1900年的4亿,还是因为中国人口已经增长太多,到16、17世纪不得不寻找新的粮食作物?第二,如果是这些新作物激发了中国人口增长,其具体贡献有多大?第三,这些新作物是否也催化了中国的人均收入增长?
他们找到了23个省1330个县的县志,从1550年左右开始研究各县志哪年首次提到玉米,依此勾画出玉米在中国的扩散途径和持续时间。他们发现,玉米最早是经三条路径进入中国:第一条路径是丝绸之路,玉米经中亚于1560年左右进入甘肃,第二条是经印度于1563年进入云南,第三条途径是经菲律宾于1572年进入福建。
接下来,龚教授把引进了玉米的县和还没引进玉米的邻县,形成两个样本,比较这两组县每隔十年的人口密度差别。在考虑到自然灾害、战争死亡等因素之后,他们的数据分析发现:按照1776年、1820年、1851年、1890年、1910年几个时间点看,在每个时期,已经引进玉米的县人口密度明显高于没有引进玉米的县,而且一个县已经种植玉米的年份越长,其人口密度高出的就越多。种玉米的时间每多十年,其人口密度就多增5%-6%。
经过各种严格计量方法的验证,他们得出的结论为:是玉米带动了中国的人口增长,而不是人口增长压力迫使中国引进玉米、红薯。而且从1776年到1910年间,中国14.12%的人口增长是由玉米所致。而从16世纪初到20世纪初,中国粮食增量的55%是由于这三项新作物。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24