京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下 数据交易规则的法律思考
大数据时代已经到来,之后将是人工智能时代,而且可能在非常近的时间我们都能看到。目前各国纷纷将大数据作为国家战略,我国也积极为大数据做充分准备并付诸实践。大数据离我们很近,它已经介入我们的生活;也离我们很远,更多人不知道大数据为何物。大数据时代的数据交易、数据共享及数据安全等在目前法律上均为空白,如何维护我们现在及未来的权利留待我们作出的法律思考。
大数据时代下数据交易规则的法律思考
一、大数据国家战略
现在随着全球数字化、网络宽带化、互联网应用于各行各业,一个大规模的产生、分享和应用数据的大数据时代已经到来。大数据将是下一个创新、竞争、生产力提高的前沿。大国均将大数据提升到国家战略的高度,如美国,2012年3月29日,美国奥巴马政府推出“大数据研究与开发计划”,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国的国土安全,转变教育和学习模式”;英国,英国在大数据方面的战略有开放有关交通运输、天气和健康方面的核心公共数据库,并在五年内投资1000万英镑建立世界上首个“开放数据研究所”等;法国,法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展等。
在我国,2015年5月8日总理亲自批示成立贵阳大数据交易所,贵阳成为全国第一家大数据交易所。交易所通过自主开发的电子交易系统面向全球提供7x24小时全天候数据交易服务,并提供完善的数据确权、数据定价、数据指数开发、数据交易、结算、交付、安全保障、数据资产管理和融资等综合配套服务;2015年7月17日,由上海市经济和信息化委员会指导,上海市云计算产业促进中心主办,新炬网络、51CTO联合承办的首届“中国数据资产管理峰会”。会议中,上海市经济和信息化委员会发布《上海金融行业数据中心安全可控白皮书》,会议围绕数据资产管理、大数据变现、数据治理等热点议题进行,同时也关注在数据收集、运用及交易中,如何确保个人的隐私受到保护、企业的商业秘密不受侵犯、国家的信息安全等问题等。
二、大数据时代带来的法律问题
大数据蕴藏着巨大的潜力和能量,因海量数据的产生、获取、挖掘及整合,展现出巨大的商业价值,且重构很多行业的商业思维和商业模式。在先行者深谙“数据即资产”的道理,并已运用到各行时,大数据时代已并非我们所能选择,它已经到来。
如何给大数据制定规则成为非常现实的问题,即如何评估数据的价值、如何保护数据安全、现代企业如何利用大数据创新转型、以及如何打破数据垄断、个体如何从大数据中获益以及如何保护个体隐私、以及如何实现数据的快速有效交易、如何发挥数据交易所的作用等留下太多的法律空白。本文试图通过数据交易所平台来初步探讨,大数据时代的数据交易规则。
三、数据交易规则初探
01、政府主导下的数据安全
大数据为国家战略,理应由国家进行主导,而不应交由市场或地方政府主导。国家应及时对大数据的交易规则、数据安全、数据运用、数据共享、个体保护、对外数据交流以及数据管控等制定相应的法律法规。然后随着大数据发展再逐步进行修订,虽然法律具有一定的滞后性,但对于已产生多时的事务,不应任由其发展,可先由部委制定规章制度,待成熟时再上升到法律。
大数据交易可由相应的归口部门进行联合管理,如科技部、公安部、商务部等,但最终是否可形成类似统一由国土安全部对数据进行管理或由其进行过滤后,再商业化运作。同时,加强对大数据相关的知识的教育、培训及宣传工作,以及开始着手各部门的衔接工作。政府应邀请法律界包括法学专家、学者教授及法学院,法院、律协、律师、公检等以及各行业协会代表参与到大数据时代数据交易规则的制定之中,对未来数据时代的交易规则、数据所有权、个体与集合数据的区分及维权、数据安全以及可能产生的纠纷预测等进行相关的研讨。
对于最可能先发生的数据安全问题,可从目前能掌握的如互联网公司非法获取、企业私下交易或共享、政府监控、黑客、用户保护意识欠缺、企业利用格式合同或强势地位收集、企业不重视数据保护或数据保护成本高、企业破产后的数据保护失控、盲目炒作大数据导致管理混乱等方面分别制定相关规定进行相应的保护和约束。
02、数据交易市场的建立及统一
各地数据交易市场相续建立,有地方政府主导的,有地方政府和企业主导等,但没有形成统一的数据交易市场,各数据交易市场各自为政,没有形成统一的交易规则、交易标准、交易定义,没有完善的数据登记,信息披露制度,没有关于国际间数据交流的相关规则等。可以说,目前数据交易市场还仅停留在撮合交易的阶段,或混乱的状态,未实质发挥其作用,未对未来做好充分的准备,任重而道远。
未来数据交易市场应是在国家主导下的统一的交易平台、统一的交易规则,并建立国家资质的数据评估机构,部分职能可交由之后可能产生的行业协会履行,国家再对各行业协会间的数据交流进行必要的监管,建议不妨参照证券交易所的相关经验。
03、企业在规范下进行数据交易
企业是大数据时代最大的获益者,也是受大数据冲击最大者。谁掌握更多的数据谁就掌握未来,而大数据之后的人工智能,也是企业能否引领未来的标杆。但企业是趋利的,而利益是双刃剑,企业在利益确实需要法律和制度的约束。应防止企业在收集、运用、共享数据时对权利的过度滥用,以及防止企业利用法律和制度的空白肆意侵犯个体或国家的隐私及安全,应将国家安全及个体隐私放在非常高的地位,并将其与企业信用进行挂钩,让法律和市场决定企业在大数据时代的生存,以倒逼企业对数据安全的重视。
04、个体对数据交易的适度参与
大数据时代的未来可能超过我们的想象,也可能在科幻电影里已经预言过。通过大数据的收集及分析,所有的痕迹将形成数据。这已经是非可以选择的时代,但可以选择的是如何主动参与到大数据时代中。如某政府官员提出的“数据银行”的概念,数据有价值,个体可主动选择是否对自己数据进行开放以及交易等主动参与的理念。
但作为在大数据面前相对弱势的个体而言,应更多关注数据安全,未来所有个体的资讯将数字化。个体的消费习惯、生活习惯、个人财产、个体特征等个体所有的隐私将无隐私可言。如何掌握数据安全的知识、维护个体的权利、保护个体隐私等将成为个体、企业与国家间进行博弈的新的场所。个体应不惧怕未来,拥抱未来,思索未来,其实大数据时代已经来到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08