京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据 汽车是大数据时代的先锋
时至今日,互联网已经行至一个中间点:上半场是互联,下半场是数据,互联的任务已经基本完成,数据将成为下半场的主角。这一点,在汽车领域也很明显。
当下的产业互联网,让越来越多的实物相连、机器相连、人机相连。而在汽车领域,车联网将通过建立在汽车内部、外部的连接,源源不断地产生数据流,引导汽车走向智能化、服务个性化。
车联网推动共享经济
从内容来看,互联网的故事只讲了三分之一,它的主角是服务业,电商、共享经济是“互联网+服务业”中的两股浪潮。
相同的是,以阿里、京东为代表的电商与共享经济的发展都离不开数据;不同的是,电商把供需关系数据化,共享经济是把消费者之间的关系数据化。共享经济的本质也在于数据化,在一个平台上实现快速匹配和交易,让资源流动起来。
我们正处于一个“万物皆联网,无处不计算”的时代,实物相连、机器相连、人体相连,将引起数据爆炸,车联网也将迎来发展的机遇。
车联网将是这样一番场景:它把汽车内部的重要部件连接起来,把汽车和汽车、个人设备、基础设施、云端都连接起来,并且产生源源不断的数据流。
未来的商机是智能化、个性化
作为工业时代的标志之一,汽车成了工业时代的先锋,今天也是大数据时代的先锋。大数据时代,就是一个智能时代、个性化服务的时代。未来,车联网能够带来的商机也在于此。
首先,汽车将越来越智能化。
谷歌的科学家说,我们没有更好的算法,有的只是更多的数据。虽然无人驾驶汽车还面临很多挑战,如晴天时行驶顺畅,下雨、下雪可能失灵。解决之道就是数据。通过收集不同历史时期的天气数据,汽车就能适应不同的天气条件。
汽车智能化的空间非常大,但也有很长的路要走。乐观地估计,汽车完全智能化之后,它将变成人类除了家、办公室和公共空间外的第四空间。人在车上可以自由做自己的事情,车会带人去想去的地方。
其次,汽车服务将更加个性化。
个性化服务的前提,是拥有源源不断的数据流。根据这些数据,可以推测人们的行为,由此再推出个性化的解决方案。个性化服务需求巨大,我们今天看到的只是小小的一角,整个需求都隐藏在冰山之下。
通过车联网,司机的驾驶数据可以被收集。如苏州金龙的G-BOS,能够实现安全驾驶管理、油耗管理、GPS定位管理、远程故障报警管理等功能。
数据在记录一切,而且颗粒度越来越小。数据可以很好地还原驾驶时的真实情况,原来这些是没办法掌握的信息。通过了解司机的真实驾驶行为,保险公司还可以发挥数据的外部性,推出个性化的保险。
有了数据,4S店的服务将更加个性化。如汽车在4S店维修时,车主常担心对方把好的零件拆了换上不好的零件,但这个问题也将逐步得到解决。每个汽车零件都有一条数据,形成自己的标识,由此实现防伪。
个性化的服务,还包括对不同车辆制定不同的解决方案,物流车、客运大巴、出租车、校车等都有不同的行驶路线和乘用人群,解决方案也应该不同。如校车上小孩子多,需考虑孩子们的身高、上下车习惯等因素制定解决方案。
今天,我们处在一个万事万物都会留下数据的世界,大数据会带领我们迈向一个更安全的世界。
不过,需要注意的是,大数据浪潮的拐点就要来了。原来使用数据根本不用告诉用户,但今天用户数据意识正在崛起,未来使用数据将逐步需要取得用户授权。如果没有车主的数据、汽车运行的数据,智能化、个性化服务只能是空中楼阁,这也是对车联网产业的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22