京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车大数据 汽车是大数据时代的先锋
时至今日,互联网已经行至一个中间点:上半场是互联,下半场是数据,互联的任务已经基本完成,数据将成为下半场的主角。这一点,在汽车领域也很明显。
当下的产业互联网,让越来越多的实物相连、机器相连、人机相连。而在汽车领域,车联网将通过建立在汽车内部、外部的连接,源源不断地产生数据流,引导汽车走向智能化、服务个性化。
车联网推动共享经济
从内容来看,互联网的故事只讲了三分之一,它的主角是服务业,电商、共享经济是“互联网+服务业”中的两股浪潮。
相同的是,以阿里、京东为代表的电商与共享经济的发展都离不开数据;不同的是,电商把供需关系数据化,共享经济是把消费者之间的关系数据化。共享经济的本质也在于数据化,在一个平台上实现快速匹配和交易,让资源流动起来。
我们正处于一个“万物皆联网,无处不计算”的时代,实物相连、机器相连、人体相连,将引起数据爆炸,车联网也将迎来发展的机遇。
车联网将是这样一番场景:它把汽车内部的重要部件连接起来,把汽车和汽车、个人设备、基础设施、云端都连接起来,并且产生源源不断的数据流。
未来的商机是智能化、个性化
作为工业时代的标志之一,汽车成了工业时代的先锋,今天也是大数据时代的先锋。大数据时代,就是一个智能时代、个性化服务的时代。未来,车联网能够带来的商机也在于此。
首先,汽车将越来越智能化。
谷歌的科学家说,我们没有更好的算法,有的只是更多的数据。虽然无人驾驶汽车还面临很多挑战,如晴天时行驶顺畅,下雨、下雪可能失灵。解决之道就是数据。通过收集不同历史时期的天气数据,汽车就能适应不同的天气条件。
汽车智能化的空间非常大,但也有很长的路要走。乐观地估计,汽车完全智能化之后,它将变成人类除了家、办公室和公共空间外的第四空间。人在车上可以自由做自己的事情,车会带人去想去的地方。
其次,汽车服务将更加个性化。
个性化服务的前提,是拥有源源不断的数据流。根据这些数据,可以推测人们的行为,由此再推出个性化的解决方案。个性化服务需求巨大,我们今天看到的只是小小的一角,整个需求都隐藏在冰山之下。
通过车联网,司机的驾驶数据可以被收集。如苏州金龙的G-BOS,能够实现安全驾驶管理、油耗管理、GPS定位管理、远程故障报警管理等功能。
数据在记录一切,而且颗粒度越来越小。数据可以很好地还原驾驶时的真实情况,原来这些是没办法掌握的信息。通过了解司机的真实驾驶行为,保险公司还可以发挥数据的外部性,推出个性化的保险。
有了数据,4S店的服务将更加个性化。如汽车在4S店维修时,车主常担心对方把好的零件拆了换上不好的零件,但这个问题也将逐步得到解决。每个汽车零件都有一条数据,形成自己的标识,由此实现防伪。
个性化的服务,还包括对不同车辆制定不同的解决方案,物流车、客运大巴、出租车、校车等都有不同的行驶路线和乘用人群,解决方案也应该不同。如校车上小孩子多,需考虑孩子们的身高、上下车习惯等因素制定解决方案。
今天,我们处在一个万事万物都会留下数据的世界,大数据会带领我们迈向一个更安全的世界。
不过,需要注意的是,大数据浪潮的拐点就要来了。原来使用数据根本不用告诉用户,但今天用户数据意识正在崛起,未来使用数据将逐步需要取得用户授权。如果没有车主的数据、汽车运行的数据,智能化、个性化服务只能是空中楼阁,这也是对车联网产业的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29