
大数据产业面临三大难题 导致安全漏洞难补
“大数据隐私的保护难度较其他安全问题更为突出,不仅需要从技术、产业与管理维度来进行多方保障,还需要从人才、法规等方面给予支持。”中国工程院院士、中国互联网协会理事长邬贺铨日前在一个论坛上提出,在大数据给人们带来便捷生活的同时,如何保护用户隐私,日益成为大数据发展的重大挑战。
“大数据时代”隐私何在
许多人都有过这样的烦恼,工作或者生活中,冷不丁的常接到陌生电话,追问自己大到买房卖房,小到餐桌地毯购置的“近期计划”。这种烦恼的源头,可能仅因为你在一次毫不在意的产品咨询会上留下了自己的联系方式。
这种所谓的行业“连锁服务”,与其说是跟踪服务,不如说是莫名困扰。究其原因,其实是大数据行业的数据滥用。
“现在就大数据来说,人的任何行为尤其是我们作为用户和消费者,任何的消费习惯、消费数据,包括交易信息,都可能存在网络上,而这个网络又不是绝对安全的。”中国电子商务研究中心研究员董毅智律师在接受《中国企业报》记者采访时说,美国的社交网站,包括中国一些社交网站都爆出过大面积的用户信息泄露事件,给每个用户造成了很大的威胁。这就意味着,在“数据滥用”的背后,一方面是对用户隐私的不尊重,一方面暴露了国家法规监管的空白。因为用户需要的服务,是精准定位而不是“精准骚扰”。
董毅智由此认为,大数据的爆发式发展,凸显出了信息安全的重要性和迫切性。
据介绍,我国的相关法律,对于互联网规范化运营作出相应规定。不过,业内外人士一直追问的是,如何让这些互联网企业自觉遵守法律,如果出现问题,对违规、违法者如何进行及时、有力的约束和惩治。对此,董毅智认为,“只有解决了法治问题,才可能解决数据滥用问题。”
数据产业的难点
解决大数据时代的信息安全,显然时不我待。对此,赛迪顾问电子信息产业研究中心分析师向阳博士在接受记者采访时表示,目前,国内大数据市场的运营与管理,有亟待解决的三个难点。
第一,缺乏国家层面的统一开放数据库。北京、上海、无锡等地,已经出现政府数据开放平台,但地方采用开放格式的比例均偏低,同时,开放程度在各地的统计口径上不尽一致,这也导致数据价值偏低。此外,在数据使用权利上,无法确保数据永久免费开放,数据提供的基本元、数据发布时间不明确等一系列问题,导致数据不能及时、有效地交流反馈,也成为大数据发展的巨大障碍。
再就是企业开放的数据,均存在变现途径少、利益归属不明晰的问题。企业在部署大数据时,越来越看重来自外部的数据源。但是很多企业受困于数据本身,大量的数据,其时间跨度久远、内容形式多样、体量庞大繁复,这就意味着,它很难将其真正地转化成对企业或社会有价值的“数据资产”。在数据交易过程中,价值归属的不明确和定价机制的不成熟,也是企业在交易市场徘徊不前的原因之一。
难点之三就是,大数据的4V特征,使得监管更加困难。非结构化数据的大量涌入,数据之间的关联性更加复杂,数据4V特征中的量大、多样性、实时性等特性,无一不对安全监管提出了严峻挑战。
面对新兴事物的快速发展,政府和企业能否在监管政策和技术升级上及时跟进,将直接决定数据安全的保障力度。
各方联手共治共防
大数据产业在发展中出现的“肠梗阻”,当然引起了政府重视。在不久前召开的“第十三届中国信息港论坛”上,工信部网络安全管理局局长赵志国表示:我国正在积极推进《电信法》立法进程。若进程顺利,有望于2016年出台“网络安全法”。
对公众历经约10余年漫长期待的《电信法》,有关方面表示,其对大数据的法治将有所体现,至于新法接下来如何规范和完善大数据安全问题,主要从面临的四个问题出发:第一是黑客攻击,第二是病毒渗透等传统网络问题向大数据领域渗透,第三是数据滥用、数据窃取、核心技术缺乏自主可控和数据权属等问题。
向阳在接受《中国企业报》记者采访时表示,建立完善的政策法规是数据开放的重要保障,在数据开放的初期,由于政府各个环节对未来风险的不可知性,应该建立健全政府数据资源共享的政策措施、标准体系和规章制度,强化政府数据资源开放共享的组织协调、统筹规划和监督管理,减少数据泄密的可能。
“大数据信息安全不仅仅依靠国家的立法保护。”董毅智告诉记者,除了法律法规的保障,还需要发挥企业在整合组织数据、融合互联网数据上的安全脱敏技术和经验优势,利用一流的技术能力构建安全之门,共同建设大数据平台,保障大数据流通的可靠性。
为让大数据产业做到安全运营,企业的作用越来越重要。对此,董毅智认为,由于互联网的迅猛发展,法律法规的出台显得有一定的滞后性,法律规定跟现实的监管是有很大差异性的,很难及时满足互联网发展的需要。他建议专家团队,可以从两点向数据产业提供帮助:一是通过法律方面的专家,向国家或行业提供一些立法建议,让法律规范完善起来。二是提倡培养公民的自我保护意识、保护手段以及保护措施。由此可见,对信息安全的重视,实际上是公民自我保护意识的加强和国家法制的完善。
注重信息安全,并不意味着拒绝大数据给人们的生活和工作带来便利,隐私安全需要得到重视但不应该过度夸大,单个的人士是无法独立于数据世界之外的。对此,向阳表示:在个人可承受的意愿范围内,你对外界提供的数据越多,获得优质荒可能性也就越高,同时也有利于减少“重复广告”的骚扰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19