
环保牵手大数据 佛企需反向挖掘数据价值
近几年,环保产业和互联网产业以愈发多样的形式拥抱彼此。环保是传统产业,其产业链条较长,囊括设计、生产、流通运输、服务等全过程,这些环节都具备和互联网结合的潜力。这一特点也赋予了整个“互联网+”环保业巨大的市场空间。在佛山,一场浩大的转型升级浪潮将环保号角吹得更响,强大的制造能力让佛山驻扎着不少环保企业的供应商。具备了需求与供应的两头优势,佛山的互联网+环保产业大有作为。
其实,在“互联网+”大潮袭来时,传统的环保企业是诚惶诚恐的。一方面,从传统产业到互联网的跨界是一件新事物,必然面临挑战。环保这个传统产业有自己的门槛,在涉足互联网时它会比消费类产业的适应效率慢一拍。加之环保市场的开放还不算充分,互联网+环保对需求端的感知同样会慢一拍。同时,环保事业的发展规范与要求在不断变化,再加上同样频繁更新的互联网行业,两者的结合可谓是变量与变量的叠加,让互联网+环保这一新兴产业也充满变数。
另一方面,不少互联网企业也跨界到环保领域一显身手。2014年8月,百度就跨界进入废旧电器回收行业,与传统环保企业合作开发一款应用,为居民提供O2O的旧物垃圾回收服务。同样在环保领域布局的还有高德。高德地图中的“躲避拥堵”就具有环保功能——匀速行驶状态下,汽车尾气排放较少。这些企业本身具有互联网思维和技术优势,让环保企业感受到一种危机感。
不过在佛山,互联网+环保却拥有巨大的成长空间。目前佛山正展开新一轮的制造业转型升级,这也倒逼各企业抬高了环保的门槛,催生了大量的环保产业市场需求。如对企业排污口各项排污指标进行在线监测,为企业提供环保指导建议等等,这些环保服务都与众多制造企业节能减排、提高资源利用率的转型需求恰好匹配。另一方面,佛山拥有完备的制造产业链和产品品类,本身也构成了环保加工业的一环,环保企业的一些仪器设备需要“佛山制造”的支持。
尽管环保产业是个战略新兴产业,备受重视,在插上互联网的翅膀后,该产业更具有了一定的战略前瞻性。但正如前面所提到,环保行业的规范要求不断在调整,新的环保法律法规的涌现都会成为行业的影响因素。正因如此,目前互联网+环保领域还没有出现占据垄断或绝对主导地位的企业。而这,也给了佛山环保企业一个突破的机会。
佛山制造业经历的大变革,不仅可以让环保成为产业转型升级的抓手,更可以壮大一批环保企业,推动它们成长为互联网+环保产业规则的制定者。
当然,佛山传统环保企业拥抱互联网,在真正壮大前,要解决不少难题。首先就是大数据。这一新生产要素也正是环境服务的核心。
以长天思源为例,我们在环保物联网方面深耕16年,依托云计算、物联网、大数据,实现环保管理全业务应用体系集成,涵盖污染源在线监控系统、VOC在线监测系统、环境第三方检测等业务。其中,数据是一切业务的基础。比如我们研发的佛山污染源在线监测系统项目,它提供了环保体系的基础数据,排污权、水权、碳排放权交易和环境金融,都能以它为依据去开展,我们借数据之力将该项目打造成环保产业的“中枢神经”。
然而如何进一步提升大数据分析的应用和服务价值,成了摆在环保企业面前的难题。尽管长天思源在这一领域探索多年,也仍有不少功课需要补。不少企业已经有意识地开始建立自己的“数据王国”,对他们来说强化数据应用的难点不在于技术层面,而在于认识和观念层面。后工业时代,企业的价值不仅体现在产品上,更体现在服务上。我们可以和一些专业大数据公司合作开发系统、建模、创立数据库,但若不懂如何运用数据服务客户,让数据增值,那么拥有以上这些技术工具也是徒劳。也就是说,挖到数据,递给客户,但如果不了解这其中能解决什么问题,企业的服务价值便大打折扣。
因此,对于佛山企业来说,最需要改变的是学会反向思考。把此前从技术端出发看问题的思维,转化为从用户的价值端寻找潜在需求。比如,根据环保污染物指标的改变提供相应的数据和监测服务。总之,智能化的数据分析、服务和模式的创新是佛企急需修炼的“内功”。
目前,包括佛山在内,全国环保产业市场化水平较低,企业服务模式较落后,加之政府环境数据的公开才起步不久,互联网+环保的产业拼图还有很大完善空间。在这种情况下,佛山要把握住在该领域出头机会。佛企要强化服务意识,政府应优化技术层面的产学研环境,共同培育大数据、环境跨界方面人才,多方努力共同擦亮佛山的互联网+环保产业品牌。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04