京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用好大数据提升法院工作能力
随着信息技术的发展和扩张,互联网对人民法院的工作产生了巨大影响。近年来,我国法院系统在“科技强院”背景下,强调通过数据分析加强法院管理和审判能力,并取得了一定成效。
事实上,数据统计本身并不困难,真正困难的是反映在数据背后的一整套科学管理制度和流程。系统搜集数据意味着数据统计不能以事后方式为满足考核指标而完成,而是需要自动体现在整个诉讼和日常管理活动中。在业已建立起包括立案、分案、开庭、送达、结案、归档等重要节点在内的、成熟的案件处理流程的法院,整个组织的协调能力强,信息技术的应用能够进一步帮助这类法院提高审判效率。如上海市第一中级人民法院新审判执行管理系统中设有“日历、备忘录”功能,对于开庭时间、审限到期等事项在日历中予以标注提醒;此外,用户台账界面的面板要素及排列顺序还可以根据需要进行个性化的配置,不但能够提醒办案法官掌握重要时间节点和程序事项,满足不同法官的审判需求,而且有助于强化对审判过程的管理和控制。
法院能否用好大数据,组织制度基础非常关键,信息技术需要和法院审判流程的完善共同演进,这是“代码就是法律”这一经典论断在诉讼法中的体现。值得注意的是,有缺陷的信息技术平台可能成为法院完善审判流程的障碍。和很多政府部门一样,各级法院的案件信息管理系统相对封闭,适用的基础信息标准不统一,由此形成的案件信息、统计数据无法按照统一标准处理和分析,“信息孤岛”现象严重。在全国推进信息化数据平台的大政策下,有必要妥善处理这一矛盾。上海一中院在审判执行管理系统改造升级的过程中,非常重视指标库的建设和维护。根据收结存、质量、效率、效果、监控、执行等类别设置了110余项指标,明确了指标的定义、统计口径、计算规则等,不同的应用系统和报表显示的指标均出自该指标库,调用的数据是同一个,这就在很大程度上解决了“信息孤岛”问题,其经验做法值得借鉴和推广。
在搜集大量数据的基础上,除了上面提到的强化内部管理外,数据分析可以帮助各级法院在如下几个方面改善能力:
一是在微观尺度上深入理解审判规律。传统的司法统计是为了帮助上级法院特别是最高人民法院作出科学决策,理解审判规律,完善司法政策和司法解释,更好地使法院作为一个整体参与社会治理。现在的信息技术可以使各级法院自主地搜集和处理各类信息,依据本地情况以需求为导向进行数据分析,发现具有地方意义的数据关联性,从而可以更加深入地在微观尺度上理解审判规律,以数据形式展示审判活动同地区具体问题的内在联系。上海一中院新审判执行系统实现了与上海市高级人民法院审判管理系统、上海法院中心数据平台相对接,为科学决策奠定了高质量的数据基础。
二是对传统调研的有益补充。传统法院的调研方式包括调查组开座谈会、实地观察、书面调查、资料收集等,依靠有限的样本和经验对审判工作的真实情况进行认识。而通过互联网和信息技术平台则能够将审判实务经验同数据结合起来。比如,上海一中院新审判执行管理系统与该院研发的案件信息智能分析系统相对接,系统中的多个工作界面均有案件智能查询入口,不但实现了不区分检索项的一键即查,查询结果按照匹配程度智能排序,还可以在系统中对判决书、法条、相关判例等进行个性化的批注、撰写心得等,而这些“灵感”的“火花”都会被保存在用户个人账户中,案件查询输入项也会被自动记忆,实现了为调研工作随时而连贯地积累一手素材。
三是寻求公正的判决。上海一中院新审判执行管理系统根据法官审理案件的案由、上诉请求、援引法条等信息,智能推送与案件类似的最高人民法院、最高人民检察院公报案例、指导性案例和该院既判案例,供法官参考,对于实现同案同判,统一法律适用,维护司法公正非常有意义。
当然,尽管有助于考虑到更多的因素,但数据分析本身无法揭示案件背后复杂的社会关系,容易抹平地区差异,也就无法取代法官在个案特别是疑难或复杂案件中的自由裁量、利益平衡以及对校正公平的判断。特别是在大陆法系国家,司法经验和以后果为导向的实用主义思维方式比纯粹依赖数据作出的判决更加可靠。而那些事实清楚、法律规定明确的案件尽管可以预测,但一般都不会进入法院,而是事先庭外和解或以其他纠纷解决方式解决了。同时,鉴于中国地方法院往往会深入介入本地政治经济社会的发展,因此在司法统计基础上发展起来的大数据分析更有可能加强各级法院整体上的能动性,而非在个案中提供指引。不过分依赖抽象数据,真正将人的因素放在首位才是追求司法公正的应有之义。
最高人民法院已经对人民法院在网上公布判决书进行了规范,这就不仅有利于法院自身对判决书进行分析,对推进法学研究和法律服务等活动都非常重要。司法文书在隐去当事人隐私信息之后,是一种重要的公共资源。现在的信息技术已经允许向社会公开这类数据资源,在法院能力有限的条件下可以考虑向第三方研究机构开放共享,提供数据分析的增值服务,为法院科学决策提供帮助,使各级法院在过去相当长时间内积累的海量数据得到有效利用和开发。但需要注意的是,私人机构对公共数据资源的使用和开发也需要受到一定限制,并以满足公共利益为前提,防止少数机构垄断对公共数据资源的开发和获取排他地位收益。从这个意义上讲,上海一中院的做法是数字时代加强自身数据能力、确保公共审判机关自主性的重要尝试和实践。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16