
“大数据”可是个识才利器
要让事实和数据说话
从以往各地各部门引进人才的情况看,存在的问题主要有三:一是所引人才并非高端,这属于层次误判;二是所引人才并不对口,这属于短缺精细;三是所引人才虽然可用,但是价值观同事先预期不相一致,这属于缺少深入识别。
怎么做,才能够解决这些矛盾呢?让我们先来看一些地方的人才评鉴方法:一是靠大师举荐;二是靠小同行评价;三是靠日后实践鉴别。这三条都有一定道理与可行之处,但也都有一些难以避免的问题。比如大师推荐,一般都是出以公心的,可是有的也难免出于私心。法拉第被他的老师、著名科学家戴维所打压不准进入英国皇家学会,就是一例明证;比如同行评价,一般也是可以的。但是,如果遇到利益纠纷,同行乃是冤家。这次屠呦呦获得诺奖后,向诺奖评审委员会建议予以取消的就是屠呦呦的同行;比如实践检验,无疑也是对的。但是,检验需要一定的时间跨度,等时间足够了,人才可能已经垂垂老矣。
我们所处的时代已经是信息时代。信息时代又划分为三个阶段:计算机时代、互联网时代和大数据时代。大数据时代选择人才、评价人才,就是不要凭印象说话,不要凭经验说话,而要凭事实和数据说话。
正是从这样一个前所未有的角度,大数据日益成为一种识才利器。
精准识才的工作原理
人们一定要问,大数据识人凭的是怎样的技巧呢?根据我的认识,有三大技巧:
其一,全范围搜索,再优中择优。众所周知的诺奖获得者评选,有其专门的评审委员会,并且遵循一套严格保密的程序。但是,在斯德哥尔摩正式颁布获奖人员名单之前,有的机构就发出自己的判断信息了。这个机构所凭借的武器就是大数据。他们利用论文发表数量、论文被引用指数,就可以预先把获奖者猜测出来。汤森路透就是这样一家能够做出比较精确预判的公司。从2002年始至今,这家公司已经成功预测出38位顶尖科学家。去年,获得诺奖的11位自然科学家中,汤森路透准确预测出8位。
其二,察微而知著,探究其内心。三国时期魏国文官刘劭以察微知著而闻名。有一天,青年曹操拉住这位名噪一时的刘劭,非让他给自己品评一番不可。刘劭被他纠缠不过,就写下“治世之能臣,乱世之奸雄”十个大字。历史证明,刘劭的判断十分准确。
那么,刘劭是凭借什么得出如此令人惊叹的结论呢?笔者认为,他是从曹操的非结构性数据里找到了答案。如今,美国人研究的“科学入心法”,就是将这一套观察方法,运用于人才识别上,并且将其数据化。这种观察,并非通过语言,而是通过非语言信息。比如,说话声调的变化、眉毛是否上扬、眼睛如何转动、肌肉如何移动等等。这些行为,都是无意识中表现出来的,是用肉眼无法观察到的,而计算机却能够很容易追踪其变化。
有篇文章这样描述这一过程:某人打开视频网站,正在观看一则广告,禁不住流露出惊喜的表情。这时,计算机摄像头提示灯忽然闪了闪,这是什么意思?原来计算机是在做这样的事:对准那个人的眼睛定位,寻找嘴部水平中心线,xyz轴建模,测量他的眼轮匝肌、皱眉肌、颧大肌各块肌肉的位移,数据传回,数据库表情匹配,得出内心情绪判断。
所谓“科学入心”,就是这样一种原理。
其三,丰富大数据,聚焦意中人。现在的世界,到处布满了数据。有人把它形容为大数据飓风,有人把它描述为大数据洪流,也就是说,人们已经生活在数据海洋里了。这个海洋,是你我、大家共同制造出来的。比如你的手机,上面下载了不少软件。你自己感到实用、方便、免费,殊不知就在你获得这些好处的时候,你的大量信息都被它采撷而去了。如果商家要为你做出一幅素描画像,那将是轻而易举的事。你的形象由两部分数据组成:一部分是交易数据,包括你的消费水平、消费频次、购物生命周期;另一部分是交互数据,包括你的图片、你的习惯、你的行为,还有你在微博、论坛、论文里发表的观点,乃至你的出行记录。这样的图像素描,就为想要寻找你的人,提供了大量信息。
弄清了以上大数据的工作原理,就知道为什么它能够帮助我们寻到人才了。
当然,大数据找才,也有其弱点。比如,对于那些名气还不够大的人,对于因为需要保守技术机密而不宜张扬,包括公开发表论文的人才,非常可能被其忽视、埋没。这就是说,大数据也有其难以令人满意之处,但总归是目前相对科学、客观、有效的人才发现、识别方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18