京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”可是个识才利器
要让事实和数据说话
从以往各地各部门引进人才的情况看,存在的问题主要有三:一是所引人才并非高端,这属于层次误判;二是所引人才并不对口,这属于短缺精细;三是所引人才虽然可用,但是价值观同事先预期不相一致,这属于缺少深入识别。
怎么做,才能够解决这些矛盾呢?让我们先来看一些地方的人才评鉴方法:一是靠大师举荐;二是靠小同行评价;三是靠日后实践鉴别。这三条都有一定道理与可行之处,但也都有一些难以避免的问题。比如大师推荐,一般都是出以公心的,可是有的也难免出于私心。法拉第被他的老师、著名科学家戴维所打压不准进入英国皇家学会,就是一例明证;比如同行评价,一般也是可以的。但是,如果遇到利益纠纷,同行乃是冤家。这次屠呦呦获得诺奖后,向诺奖评审委员会建议予以取消的就是屠呦呦的同行;比如实践检验,无疑也是对的。但是,检验需要一定的时间跨度,等时间足够了,人才可能已经垂垂老矣。
我们所处的时代已经是信息时代。信息时代又划分为三个阶段:计算机时代、互联网时代和大数据时代。大数据时代选择人才、评价人才,就是不要凭印象说话,不要凭经验说话,而要凭事实和数据说话。
正是从这样一个前所未有的角度,大数据日益成为一种识才利器。
精准识才的工作原理
人们一定要问,大数据识人凭的是怎样的技巧呢?根据我的认识,有三大技巧:
其一,全范围搜索,再优中择优。众所周知的诺奖获得者评选,有其专门的评审委员会,并且遵循一套严格保密的程序。但是,在斯德哥尔摩正式颁布获奖人员名单之前,有的机构就发出自己的判断信息了。这个机构所凭借的武器就是大数据。他们利用论文发表数量、论文被引用指数,就可以预先把获奖者猜测出来。汤森路透就是这样一家能够做出比较精确预判的公司。从2002年始至今,这家公司已经成功预测出38位顶尖科学家。去年,获得诺奖的11位自然科学家中,汤森路透准确预测出8位。
其二,察微而知著,探究其内心。三国时期魏国文官刘劭以察微知著而闻名。有一天,青年曹操拉住这位名噪一时的刘劭,非让他给自己品评一番不可。刘劭被他纠缠不过,就写下“治世之能臣,乱世之奸雄”十个大字。历史证明,刘劭的判断十分准确。
那么,刘劭是凭借什么得出如此令人惊叹的结论呢?笔者认为,他是从曹操的非结构性数据里找到了答案。如今,美国人研究的“科学入心法”,就是将这一套观察方法,运用于人才识别上,并且将其数据化。这种观察,并非通过语言,而是通过非语言信息。比如,说话声调的变化、眉毛是否上扬、眼睛如何转动、肌肉如何移动等等。这些行为,都是无意识中表现出来的,是用肉眼无法观察到的,而计算机却能够很容易追踪其变化。
有篇文章这样描述这一过程:某人打开视频网站,正在观看一则广告,禁不住流露出惊喜的表情。这时,计算机摄像头提示灯忽然闪了闪,这是什么意思?原来计算机是在做这样的事:对准那个人的眼睛定位,寻找嘴部水平中心线,xyz轴建模,测量他的眼轮匝肌、皱眉肌、颧大肌各块肌肉的位移,数据传回,数据库表情匹配,得出内心情绪判断。
所谓“科学入心”,就是这样一种原理。
其三,丰富大数据,聚焦意中人。现在的世界,到处布满了数据。有人把它形容为大数据飓风,有人把它描述为大数据洪流,也就是说,人们已经生活在数据海洋里了。这个海洋,是你我、大家共同制造出来的。比如你的手机,上面下载了不少软件。你自己感到实用、方便、免费,殊不知就在你获得这些好处的时候,你的大量信息都被它采撷而去了。如果商家要为你做出一幅素描画像,那将是轻而易举的事。你的形象由两部分数据组成:一部分是交易数据,包括你的消费水平、消费频次、购物生命周期;另一部分是交互数据,包括你的图片、你的习惯、你的行为,还有你在微博、论坛、论文里发表的观点,乃至你的出行记录。这样的图像素描,就为想要寻找你的人,提供了大量信息。
弄清了以上大数据的工作原理,就知道为什么它能够帮助我们寻到人才了。
当然,大数据找才,也有其弱点。比如,对于那些名气还不够大的人,对于因为需要保守技术机密而不宜张扬,包括公开发表论文的人才,非常可能被其忽视、埋没。这就是说,大数据也有其难以令人满意之处,但总归是目前相对科学、客观、有效的人才发现、识别方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27