
大数据无疑是现在最引人瞩目的词汇。但是,谁坚持认为可以从这项技术中获利——而且如何获利?
过去10年中,在经历了通信业和投资银行业的几个早期大数据项目后,我总结这个新兴技术最适合用在像股票市场和供应链这样的复杂系统中,获得更精准的解析。尤其是投资银行,这是最先采用大数据分析的行业之一。毕竟,那些专职赚钱的高管们热衷于省钱和创造财富。
在投资银行,为了更准确的推荐投资或买入股票,需要处理的文档(比如新闻、资产负债表等)数量太大而不能全人工处理。因此,合伙人倾向于简化分析过程,使用电子表格文档去完成大多数工作。而采用大数据技术处理大量信息可以有效性的降低风险,和以前相比,公司可以更好的进行分析和预测。
公司如何运用大数据赚钱呢?
通过大数据平台,股票市场的交易员和投资组合证券d经理可以处理大量的非结构化数据,来识别最值得投资的公司。
非结构化的公众信息,包括公司新闻、产品评论、供应商数据和价格表变更,可以以大数据的形式进行整合并建立数学模型,帮助交易员决定买入或卖出哪支股票。
一些按照上述方式运用大数据进行投资预测的企业,为了减少项目的前期投入使用云服务,比如Amazon的网络服务(AWS),从少量的服务器开始,获利后再扩大规模。我认识一个从大型投资银行辞职的定量分析师,他可以在6个月内、用有限的资金创建一个可盈利的大数据交易系统。
甚至在制造业,使用大数据可以提升预测能力。一个我曾经担当顾问的欧洲主要汽车制造商,建立了一个内部系统进行钢铁价格的可行性分析,确定在最合适的时间、以更优惠的价格购买原材料。该系统采用开源Java框架Hadoop,整合多个供应商的数据库、总量达到15Tb的信息,两年节省了1.6亿美元。
该项目成功的两个原因是:首先,该公司有足够的信息对所有供应商进行建模;其次,该项目节省的原材料成本大大超过了建立系统的费用。
公司如何运用大数据赔钱呢?
但是,不是每个大数据项目运用这种方法都会成功。有时,公司运用大数据,赔钱和赚钱的概率相差无几。大数据失败的早期情况并不相同,但最普遍原因如:
开始时步子迈得太大:大数据不需要大预算。如果怀着投资多等于回报大的想法开始一个项目,往往会失败。在项目开始前,明智的做法是,分析在该技术上以有限的投入、在小范围内是否可以带来预期的收益。如果是,该项目随时可以扩大规模,保证规模越大利润越高。
低估人力需求:开始实施系统前,问自己一个简单的问题:没有恒定的人力支持,该大数据项目能够运作吗?如果答案是“不”,那么马上停止。建立一个不能以盈利模式进行维护的系统,意味着数百万的损失。
尝试推进自然语言处理:大数据的一个潜在承诺是,通过自然语言处理(NLP),将各领域的数据变得可读可写。这种想法是令人兴奋的——但在实际应用中没有进展。目前的自然语言处理有严格的限制,因为人工智能还不够先进——再过10年也可能不行。
现代大数据意味着可以节省费用,和过去的数据处理器相比简直是魔法。但在最初建立大数据项目时判断是否真的可以盈利,将不会浪费你的时间和资源。只有傻瓜才会冒进。
数据科学家Marco Visibelli从IBM辞职后创立了Kuldat公司,该公司运用大数据,对销售和市场前景进行可行性分析并呈现可能的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15