京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是领域相关的,如今大数据在各个领域都有着卓越的表现。比如,政府、企业与医疗等机构的数据涉及到安全、利益与隐私问题,要开放与共享是有难度的。但是如果研究大数据的处理技术,而不是去挖掘具有商业价值的大数据,不妨换个思路,用不涉及安全、利益与隐私问题的大数据作为数据源。
被誉为“大数据时代的预言家”维克托•迈尔•舍恩伯格的国外大数据系统研究的先河之作《大数据时代:生活、工作与思维的大变革》书里“大数据先锋”一节中写到:“天文学,信息爆炸的起源“。
只有考虑到社会各个方面的变化趋势,我们才能真正意识到信息爆炸已经到来。我们的数字世界一直在扩张。以天文学为例,2000年斯隆数字巡天(Sloan Digital Sky Survey)项目启动的时候,位于新墨西哥州的望远镜在短短几周内收集到的数据,已经比天文学历史上总共收集的数据还要多。到了2010年,信息档案已经高达1.4×242字节。不过,预计2016年在智利投入使用的大型视场全景巡天望远镜(Large SynopticSurvey Telescope,LSST)能在五天之内就获得同样多的信息。天文学领域的变化在各个领域都在发生。”
从上可知,天文学是最早迎接大数据挑战的领域。随着天文观测技术的发展,天文学已经进入了一个信息丰富的大数据时代,天文数据正在以TB级甚至PB量级的速度不断增长。目前国际上已有多个国家进行了大规模的巡天项目,除SDSS(Sloan Digital Sky Survey)外,还有Pan-STARRS1(The Panoramic Survey Telescope and Rapid Response System)、WISE (Wide-field Infrared Survey Explorer)、 2MASS (Two Micron All Sky Survey)、Gaia 、UKIDSS (UKIRT Infrared Deep Sky Survey)、NVSS(The NRAO VLA Sky Survey)、FIRST(Faint Images of the Radio Sky at Twenty-cm)、 2df (Two-degree-Field Galaxy Redshift Survey)、LAMOST(The Large Sky Area Multi-ObjectFiber Spectroscopic Telescope –郭守敬望远镜)等等,这些巡天项目每天都在产生着海量的天文数据。目前,业界对大数据的看法不尽相同,但大数据应具备的4V特征已达成共识,即:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(精确)或 Value (价值)。天文数据具备4V特征,因此天文数据是大数据。在难以获取其他大数据时,不妨考虑根据天文学领域的需求,结合计算机科学、模式识别、系统科学等相关学科领域的理论与方法,研究与发展天文大数据的处理技术。
不同于其他具有商业价值的大数据应用领域,研究天文大数据是面向基础自然科学研究领域的应用。相信可以推动对大数据研究的的发展,在研究技术上形成百花齐放的局面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21