京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是领域相关的,如今大数据在各个领域都有着卓越的表现。比如,政府、企业与医疗等机构的数据涉及到安全、利益与隐私问题,要开放与共享是有难度的。但是如果研究大数据的处理技术,而不是去挖掘具有商业价值的大数据,不妨换个思路,用不涉及安全、利益与隐私问题的大数据作为数据源。
被誉为“大数据时代的预言家”维克托•迈尔•舍恩伯格的国外大数据系统研究的先河之作《大数据时代:生活、工作与思维的大变革》书里“大数据先锋”一节中写到:“天文学,信息爆炸的起源“。
只有考虑到社会各个方面的变化趋势,我们才能真正意识到信息爆炸已经到来。我们的数字世界一直在扩张。以天文学为例,2000年斯隆数字巡天(Sloan Digital Sky Survey)项目启动的时候,位于新墨西哥州的望远镜在短短几周内收集到的数据,已经比天文学历史上总共收集的数据还要多。到了2010年,信息档案已经高达1.4×242字节。不过,预计2016年在智利投入使用的大型视场全景巡天望远镜(Large SynopticSurvey Telescope,LSST)能在五天之内就获得同样多的信息。天文学领域的变化在各个领域都在发生。”
从上可知,天文学是最早迎接大数据挑战的领域。随着天文观测技术的发展,天文学已经进入了一个信息丰富的大数据时代,天文数据正在以TB级甚至PB量级的速度不断增长。目前国际上已有多个国家进行了大规模的巡天项目,除SDSS(Sloan Digital Sky Survey)外,还有Pan-STARRS1(The Panoramic Survey Telescope and Rapid Response System)、WISE (Wide-field Infrared Survey Explorer)、 2MASS (Two Micron All Sky Survey)、Gaia 、UKIDSS (UKIRT Infrared Deep Sky Survey)、NVSS(The NRAO VLA Sky Survey)、FIRST(Faint Images of the Radio Sky at Twenty-cm)、 2df (Two-degree-Field Galaxy Redshift Survey)、LAMOST(The Large Sky Area Multi-ObjectFiber Spectroscopic Telescope –郭守敬望远镜)等等,这些巡天项目每天都在产生着海量的天文数据。目前,业界对大数据的看法不尽相同,但大数据应具备的4V特征已达成共识,即:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(精确)或 Value (价值)。天文数据具备4V特征,因此天文数据是大数据。在难以获取其他大数据时,不妨考虑根据天文学领域的需求,结合计算机科学、模式识别、系统科学等相关学科领域的理论与方法,研究与发展天文大数据的处理技术。
不同于其他具有商业价值的大数据应用领域,研究天文大数据是面向基础自然科学研究领域的应用。相信可以推动对大数据研究的的发展,在研究技术上形成百花齐放的局面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21