京公网安备 11010802034615号
经营许可证编号:京B2-20210330
23年大数据揭示惊人事实:10次历史大顶均有解套机会
1990年底,中国股市开业,在短短的25年间,中国股市从最初的8只股票,发展到现今的2780只股票,承载了几代人的梦想,亦记录了无数人的悲喜人生。25年其实很短,对于人来说,才刚刚大学毕业,正值青年,敢想敢做,亦敢哭敢笑;但对于A股投资者来说,或许这25年,却已经如经历了几世轮回一般,上过天堂,亦下过地狱;有许多人借由A股发家致富,亦有更多的人倾家荡产,人生断魂!或许这有些过于危言耸听,但却绝不是无稽之谈,这对于2015年6月12日进入A股市场的投资者来说,更是刻骨铭心。
数据统计显示,2015年6月12日至今,上综指由5178点,跌至3100多点,A股市值由76万亿跌至46万亿,2个多月时间,30万亿财富灰飞烟灭。8成的个股下挫幅度超过30%,44%的股票跌幅超过50%,股价断崖式下挫,跌停属于家常便饭。对于新进入A股的投资者来说,这两个月宛如噩梦,甚至发誓此生不再踏入A股;但对于浸淫A股十多年甚至是伴随着A股成长的投资者来说,会说:果然如此,熊长牛短!
此文,不会对中国资本市场建设进行评论,亦不会对A股市场的发展做出预测,此处只为了寻找一个真相:上综指高位买入股票,有生之年,还可以解套吗?为了回答这个问题,此处,将针对上综指20多年间的曾经被视为A股投资者绝望的山顶的点位下,全部A股后市的走势进行完整的统计,为各位呈现数据事实下的真相。
数据统计思路解析:
1、 买入持有策略。假设每一波上综指的高位买入A股,随后持股不动,据此统计买入点至对应时间点内的区间涨跌幅(收益率)。
2、 历史(天):买入点持有到对应日期经历的天数。
3、 日期:上综指出现高位的日期。
4、 上涨数量:买入日期点至统计日期点的区间涨跌幅大于0的股票数量。
5、 上市A股数量:时间点上A股上市的股票总数量。
6、 上涨概率:上涨概率=上涨数量/上市A股数量。
7、 上涨平均收益率:区间点内大于0的涨跌幅的算术平均值。
8、 下跌平均收益率:区间点内小于0的涨跌幅的算术平均值。
9、 加权风险收益率:=上涨平均收益率*上涨概率+下跌平均收益率*(1-上涨概率)。
10、 收益率计算统一进行前复权处理。
11、 解套点:上涨概率超过80%,则可以认为随机买入股票至该时间点,依然有大概率解套机会。
第一顶:1428
买入点:1992-5-25
解套点:2001-6-15,2007-10-16,2007-10-16,20019-8-4,2015-6-12,2015-9-1
如果是第一代股民,在1992-5-25,只有25只可供选择的股票,在该时间点随机买入股票,将大概率被套,接下来的277个日夜里,只有40%的概率不被套,如果持股到1994年,基本上76%的概率将被套牢,如果至此,你放弃治疗,退出江湖不再留心A股股价,并持续持股不动,那么经历3308个日夜,你将进入大概率解套时间点,并获取加权风险收益率达433.82%,随后如果依然不动如山,持股到2015年6月12日,此时,基本上100%解套,加权风险收益率是1972.83%,23年期间年化复合增长率14.09%。
第二顶:1444
买入点:1993-2-26
解套点:2001-6-15,2007-10-16,2015-6-12,2015-9-1
在1993-2-26,第一次大概率解套点要到2001-6-15,如果持续持股到2015-6-12的22年期间,年复合增长率为12.35%。第三顶:1041
买入点:1994-9-14
解套点:1997-5-12,1998-6-4,1999-6-30,2001-6-15,2004-4-7,2007-10-16,2009-8-4,2015-6-12
在1994-9-14买入,基本上不会套,如果持续持股到2015-6-12,21年期间,年化复合增长率13.7%。第四顶:1510
买入点:1997-5-12
解套点:2001-6-15,2007-10-16,2009-8-4,2015-6-12,2015-9-1
在1997-5-12买入,第一次解套在2001-6-15,如果持续持股到2015-6-12,18年期间,年化复合增长率12.7%。第五顶:1422
买入点:1998-6-4
解套点:2001-6-15,2007-10-16,2009-8-4,2015-6-12,2015-9-1
在1998-6-4买入,第一次解套在2001-6-15,如果持续持股到2015-6-12,17年期间,年化复合增长率13.14%。第六顶:1756
买入点:1999-6-30
解套点:2001-6-15,2007-10-16,2009-8-4,2015-6-12,2015-9-1
在1999-6-30买入,第一次解套在2001-6-15,如果持续持股到2015-6-12,16年期间,年化复合增长率12.94%。第七顶:2212
买入点:2001-6-15
解套点:2015-6-12,2015-9-1
在2001-6-15买入,第一次解套在2015-6-12,14年期间,年化复合增长率11.73%。第八顶:1783
买入点:2004-4-7
解套点:2007-10-16,2009-8-4,2015-6-12, 2015-9-1
在2004-4-7买入,基本不会被套,如果持续持股到2015-6-12,11年期间,年化复合增长率20.69%。第九顶:历史之最6124
买入点:2007-10-16
解套点:2015-6-12
2007-10-16,6124,这是多少A股投资者的梦魇啊,随后的一年期间,84%的个股跌幅超过了50%;70%的个股跌幅超过60%;40%的股票跌幅超过70%;有10%的个股跌幅超过了80%;还有5个股票跌幅超过了90%;08年多少人觉得此生再无解套之日,又有多少家庭矛盾因此爆发,此处不表;时间拉到2015-6-12,如果6124买入的散户持股持续不动,在这8年期间,年化复合增长率16.34%。8年啊,只需要8年耐心不动,将从割到体无完肤,到收益转正,这就是天堂到地狱的区别。第十顶:3478
买入点:2009-8-4
解套点:2015-6-12
2009年,4万亿的投资,世界经济的救世主,很遗憾3478,随后迎来了5年的下跌,又是一轮心碎。直至2015年6月12日,6年期间,年化复合增长率23.34%。展望:第十一顶:5178
买入点:2015-6-12
解套点:?
这是改革的梦想,但却无法推测何处是尽头!
总结:
上证综指,23年期间,关注了11个所谓的顶部,有很多顶,曾经被认为是绝杀之地,不走则是灭亡之始,但从统计的数据来看;这些所谓的顶,在中国不到30的资本市场当中,均被证伪,在这些所谓的顶部买入股票并持有不动,在后续的短短20年当中,均出现了多次大概率的解套机会,并获取超额收益率,年化复合增长率高达12%以上,这样说,大多数人可能理解不到其中妙处,巴菲特的年复合增长率也就区区25%而已,而他是投资之神,12%以上的复合增长率意味着,如果投资持股不动,即使你是在所谓的顶部买入,在不到20年的时间内,你可以成为半个巴菲特!人生如梦亦如幻啊~割肉流血之时,怎么可能想到,自己还是半个巴菲特……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22