
改变医疗行业的八个大数据应用
医药和医疗正在成为大数据的杀手应用。医药和医疗行业的管理者们已经意识到,Hadoop、机器学习、自然语言处理等新型数据分析技术是带来飞跃式发展的关键契机。
以下是正在改变医疗行业的八个大数据创新应用:
一、基因组学。这是大数据在医疗健康行业最经典的应用。基因测序的成本在不断降低,同时产生着海量数据。DNAnexus、Bina Technology、Appistry和NextBio等公司正通过高级算法和云计算来加速基因序列分析,让发现疾病的过程变得更快、更容易和更便宜。戴尔公司也为两个医疗研究中心提供计算力,根据每个孩子的不同基因信息,制定专门的小儿癌症治疗方案。
二、医生的BI。西雅图儿童医院的医护人员如今正在使用Tableau,可视化分析遍布医院各处的服务器和数据库里的数以TB计的数据。可视化数据分析不但帮助医护人员减少医疗事故,制定临床试验计划,而且还帮医院节省了300万美元的供应链成本。
三、语义搜索。想象你是一位医生,正需要了解一位新来的病人,或者想知道新治疗手段对哪些病人有效。但是病人病历散布在医院的各个部门,格式各异,更糟糕的是,各部门都用自己的术语创建病历。一家创业公司Apixio正在试图解决这个问题,Apixio将病历集中到云端,医生可通过语义搜索查找任何病历中的相关信息。
四、万能的Hadoop。Cloudera正在与西奈山医学院合作开发新的生物数据分析方法和系统。Cloudera还与FDA合作侦测多种药物组合的副作用,与埃默里大学合作帮助病历学家更准确地分析医疗影像。Cloudera的客户之一——Explorys的业务主要是聚合并分析医疗记录,而英特尔和NextBio则合作使用Hadoop处理基因数据。
五、IBM沃森(Watson)。IBM在医疗领域建树颇多,但最酷的莫过于与WellPoint合作将智力问答电视节目“危险边缘”的冠军系统(Watson)部署到医生的办公室里。Watson能“听懂”医生的自然语言问题,同时快速分析堆积如山的医疗研究数据给出答案。
六、疾病预防。如何能不通过昂贵的诊断技术就能诊断早期疾病是医学界的一大课题,Seton医疗机构目前已经能借助大数据做到这一点。例如充血性心脏衰竭的治疗费用非常高昂,通过数据分析,Seton的一个团队发现颈静脉曲张是导致充血性心脏衰竭的高危因素。(而颈静脉曲张的诊断几乎没有什么成本)
七、医院数据科学家。如今医疗技术公司Alliance Health Networks中也出现了一个新的职位:首席数据科学家。该公司提供医疗专业垂直社交网站,收购了医疗搜索数据库Medify,因此需要一位首席数据科学家来领导数据分析工作,向医疗专业用户提供有价值的反馈。
八、众包科学。医疗行业的受控实验往往昂贵而无效,于是人们开始琢磨能否从现实世界的鲜活数据着手。医疗众包领域最知名的公司当属社交网站PatientsLikeMe,该网站允许用户分享他们的治疗信息,用户也能从相似的患者的信息中发现更加符合自身情况的治疗手段。作为一个副产品,PatientsLikeme还能基于用户自愿分享的数据进行观测性实验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10