
大数据时代让穷人更难生活
大数据可以帮助人们解决很多对于个人来说非常困难的问题。例如它可以帮助企业降低成本,帮助城市进行规划,帮助情报机构发现恐怖分子之间的联系,协助卫生官员预测疫情,以及帮助警察提前预知犯罪等。政策制定者会越来越倾向于根据数据做出决策,并且参考通过复杂算法得出的建议来做出决定。但是,如果这些数据是关于个人,尤其是没有太多话语权的普通百姓时,这些算法就会成为一种「压迫」。对于美国的很多穷人来说,每一次关于这些数据的收集都会将他们试图逃离贫困的努力变为泡影。
低收入用户是美国社会中被监视最严重的一部分民众。据巴尔的摩大学(University of Baltimore)法律教授 Michele Gilman 介绍,这并不是说警察随时都在盯着他们,而是说像公共福利项目、儿童福利系统等都在收集大量的用户数据,尤其是穷人。在一些特定的区域,为了能够将公共福利进行量化,申请者需要进行指纹采集和药物测试。一旦人们开始接受这些福利,政府将会开始监测他们如何花费这些资金,并且有时候也会在其家中进行检查。通过这些方式收集的数据最终会反馈到警察系统,从而形成了一个监测循环。「这些项目成为了大数据信息流的一个部分,而大多数人都没有意识到这一点,而这些最终都会对他们的机会产生影响。」Gilman 说。一旦某人的某一次不当行为出现在了档案上,那么他将很难再找到另外一份工作、贷款或者租房。信贷员或者公司人事经理会检查申请人的个人记录,从而来确定这个人是否有一些不良行为。
渥太华大学教授 Ian Kerr 介绍,大数据系统不仅会预测一个人的机会大小,同时他们也可以违反无罪推定的法律原则。在法院系统之外,「无罪推定」是一项基本原则,也是人的基本权利。Kerr 说,「申辩权(有权发表意见)、知情权、参加听证会的权利以及质疑信息的权利是基本权利。」但是如果我们采用大数据来帮助我们做决定,即 Kerr 所称的「算法正义」,那么我们的很多权利都将不复存在。
作为教学的一部分,Gilman 和学生一起开了一家「诊所」,主要帮助人们将有害记录从其文件中去除。她介绍了她的一个客户——一个有着 14 次被捕经历的非裔美国人,而其被捕的原因是没有可永久居住的房屋。她帮助他将相关的被捕经历从文件中彻底抹去了。但是很多情况下,只是将个人记录中的污点去除并没有什么实际意义。当他们的逮捕记录被去除以后,他们也会从相应州的公共系统的数据库中消失。有时候即便是官方纠正过,但是错误和旧信息仍然会存在于档案中没有更新。如果被捕记录已经和私人数据经纪人分享,那么这些经纪人也很可能不会关注这些信息是否有被更新。在这些情况下,这些州就只是名义上遵从公平信息原则。他们允许人们可以看到这些收集的数据,并且对数据进行更正和更新。但是如果这些纠正的数据出现在更新以后,这就意味着你的这次改变其实并没有什么实际意义。
大数据的这些隐患已经引起了美国联邦贸易委员会(Federal Trade Commission)的注意,该委员会在去年九月开始了一个关于该主题的工作小组,小组成员讨论了大数据分析将如何包括或者排除某些特定的人群。一些评论人警告道,算法有可能根据别人的行为来剥夺其他人的机会。但是,如果善加利用的话,大数据也可能为低收入用户带来福音。例如,一些公司通过分析一些公司数据来计算低收入用户的信用分数,使得那些在传统信用体系下信用分数不高、但是又具有其他有价值信息(例如按时付款、拥有汽车等)的人们可以获得更高的信用分数。
毫无疑问,算法可以使得人们做出的决定更加精确有效。大数据具有提高人们生活质量的能力,而且它也确实做到了。但是如果缺少了人情味,算法也可能因为只追求效率而使得社会的一些群体更加边缘化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23