
交通大数据,在新老技术概念间架设桥梁
交通大数据所采集的信息与传统交通调查数据之间存在很大差异,尽管我们可以采用例如“居民活动空间”等新技术概念来适应其特点,但是在许多情况下,仍然希望能够在新旧概念之间架设桥梁。例如,移动通信数据与围绕居民出行OD的交通调查所采集的数据存在一定程度上的差异,但是两者存在能够在部分参数上反映出来的内在联系。
交通调查通过访问调查记录居民一天的全部出行,包括出行时间、目的地、交通方式等,可以说详细记录了居民口述的出行活动。但是其缺陷是无法实现大样本调查(目前城市综合交通调查一般抽样率为1-5%),不能连续观测(尽管交通调查中也有连续追踪调查的方法,但是只能对少数典型用户实施,其抽样数量一般为数千户这样的量级)。
移动通信数据本质上是在满足通信需求基础上产生的用户时空位置信息,如果将其转换到传统出行OD概念,则需要增加很强的假设。对于一般大规模信息采集所使用的信令数据来说,由于移动通信数据的时空精度(其时间上具有与活动起始时刻不能对应的误差;其空间上获得的是所属基站,具有数百米至数公里的误差)并非理想,勉强转换成为OD数据其可信度往往受到很大的质疑。
尽管如此,我们仍然可以发现两种数据所形成的某些参数具有很强的相关性,从而可以通过建立转换模型(尽管这种转换模型需要定期标定)实现两者的映射。
图1中显示了上海市顾村居民利用移动通信数据测定的活动点(连续停留30分钟以上的空间位置)空间分布,以及居民出行调查获得的出行D点空间分布的对比情况,由于数据所反映的活动日期(手机数据所选取的调查数据为2011年9月1日至2011年9月30日期间识别出来的顾村居住社区居民用户数据,问卷数据为2012年8月29日至2012年9月4日的顾村大型居住社区入户问卷调查数据。)存在差异,以及样本数量的差异,其空间分布亦存在少许不同,但是总体态势是一致的。
*图中色块深浅表示在该区域内活动占全部活动的百分比
图1 不同数据源提取的上海市顾村大型居住社区居民活动空间分布对比
当然这种直观的判断不能代替科学的检验,在表1中是采用Kolmogorov-Smirnov检验,对两种数据源在交通大区尺度的空间分布是否相同进行一致性分析结果,其双侧检验显著性概率均有p>0.05,证实了两样本数据具有相同分布的假设。
表1 部分社区移动通信数据与调查数据Kolmogorov-Smirnov检验统计量
在移动通信所检测的活动点与传统技术概念中出行率之间也存在很大的关联性。在上海市选取了10个不同区位的地区,采用移动通信数据测定居住在该区域居民的活动点数量,并进一步与第四次综合交通调查获得的相同区域居民出行率进行比较(参见图2),可以清楚地看到这种关联性。
图2 上海市居民日均出行率与移动通信活动点回归分析结果
这样的实验结果令我们感到高兴,因为可以采用移动通信数据获得某些居民活动特征后,将其转换为传统基于出行OD概念技术体系中的部分参数。从而使得有可能在具有说服力检验基础上,在两次大规模综合交通调查之间(一般为5-10年),采用移动通信数据修正其中的部分参数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01