京公网安备 11010802034615号
经营许可证编号:京B2-20210330
交通大数据,在新老技术概念间架设桥梁
交通大数据所采集的信息与传统交通调查数据之间存在很大差异,尽管我们可以采用例如“居民活动空间”等新技术概念来适应其特点,但是在许多情况下,仍然希望能够在新旧概念之间架设桥梁。例如,移动通信数据与围绕居民出行OD的交通调查所采集的数据存在一定程度上的差异,但是两者存在能够在部分参数上反映出来的内在联系。
交通调查通过访问调查记录居民一天的全部出行,包括出行时间、目的地、交通方式等,可以说详细记录了居民口述的出行活动。但是其缺陷是无法实现大样本调查(目前城市综合交通调查一般抽样率为1-5%),不能连续观测(尽管交通调查中也有连续追踪调查的方法,但是只能对少数典型用户实施,其抽样数量一般为数千户这样的量级)。
移动通信数据本质上是在满足通信需求基础上产生的用户时空位置信息,如果将其转换到传统出行OD概念,则需要增加很强的假设。对于一般大规模信息采集所使用的信令数据来说,由于移动通信数据的时空精度(其时间上具有与活动起始时刻不能对应的误差;其空间上获得的是所属基站,具有数百米至数公里的误差)并非理想,勉强转换成为OD数据其可信度往往受到很大的质疑。
尽管如此,我们仍然可以发现两种数据所形成的某些参数具有很强的相关性,从而可以通过建立转换模型(尽管这种转换模型需要定期标定)实现两者的映射。
图1中显示了上海市顾村居民利用移动通信数据测定的活动点(连续停留30分钟以上的空间位置)空间分布,以及居民出行调查获得的出行D点空间分布的对比情况,由于数据所反映的活动日期(手机数据所选取的调查数据为2011年9月1日至2011年9月30日期间识别出来的顾村居住社区居民用户数据,问卷数据为2012年8月29日至2012年9月4日的顾村大型居住社区入户问卷调查数据。)存在差异,以及样本数量的差异,其空间分布亦存在少许不同,但是总体态势是一致的。
*图中色块深浅表示在该区域内活动占全部活动的百分比
图1 不同数据源提取的上海市顾村大型居住社区居民活动空间分布对比
当然这种直观的判断不能代替科学的检验,在表1中是采用Kolmogorov-Smirnov检验,对两种数据源在交通大区尺度的空间分布是否相同进行一致性分析结果,其双侧检验显著性概率均有p>0.05,证实了两样本数据具有相同分布的假设。
表1 部分社区移动通信数据与调查数据Kolmogorov-Smirnov检验统计量
在移动通信所检测的活动点与传统技术概念中出行率之间也存在很大的关联性。在上海市选取了10个不同区位的地区,采用移动通信数据测定居住在该区域居民的活动点数量,并进一步与第四次综合交通调查获得的相同区域居民出行率进行比较(参见图2),可以清楚地看到这种关联性。
图2 上海市居民日均出行率与移动通信活动点回归分析结果
这样的实验结果令我们感到高兴,因为可以采用移动通信数据获得某些居民活动特征后,将其转换为传统基于出行OD概念技术体系中的部分参数。从而使得有可能在具有说服力检验基础上,在两次大规模综合交通调查之间(一般为5-10年),采用移动通信数据修正其中的部分参数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14