京公网安备 11010802034615号
经营许可证编号:京B2-20210330
花了无数时间来创建和进行一系列的活动,现在你终于准备好了要把结果展示给老板看。你已经精心排练了你的演示报告,对整个工作感觉好极了,除了那张展现结果表述得不是很清楚的幻灯片。
就算数据的其余部分很吸引人,你知道老板总是会不自觉地把注意力集中到那张表述不太清楚的幻灯片上。虽然你可能不喜欢那样,但是我们认为任何活动最重要的部分是在所有工作都做完了才到来的。换句话说,那张图是十分重要的。
当然,做一张简单的图表很容易,但是要让你的下次汇报水平上一个台阶,并展现出你所做工作的真正影响力,你需要非常关注细节。为了帮助你把下一次演示做得更好,我们列出了10个快速便捷的报告微调方法作为入门。 具体来说,下面的每个例子,我们将让你体会到利用Excel和HubSpot进行报告微调的效果。
1)改变图表类型
下面这个例子,表明如何选择不同的图表让你的报告变得清晰。
之后:
虽然两张图显示的都是相同的数据——某时段MQLs的产生量,根据来源区分——第二张图是一个区域图,让观众能够把不同时期的MQL流的变动看得更清楚。
2)输出以先前表现为基准的图
让我们假设你刚刚出版了一本非常棒的电子书。让你高兴的是,你的潜在客户不断攀升。太棒了!但是,你的老板总是问尖锐的问题:潜在客户增长是好事,但是否能带来不一样的效果?
你如何来更新你的报告,给老板展示你的潜在客户数据和正常数据的对比?在你的报告中额外增加一系列的数据,显示一下跟以前相同时间段指标的比较情况。
在下面的例子中,你可以看到随着时间的推移,有稳定的增长值——带有和不带有以前月份的数据。
之前:
之后:
增加额外的内容提供了更好的快照来比较你的当前和之前的工作表现。
3)改变数据的次序
就算全部正确的数据都已经在你的图表里,关键的一点是把数据用有逻辑性和直观性的方式排列。可以按字母顺序、次序或按价值排列。
在下面的例子里,我们把销售周期的速度绘制成一张柱状图,根据最初的销售来源进行细分。根据这个报告,我们试图了解哪个来源带来最快变现的潜在客户,以及哪个来源潜在客户变现最慢。
之前:
之后:
看到不同了吗?如果数据是随机排列的,会很难发现战略上的关键点。
4)显示数据标记。
如果你是在绘制一段时间内的趋势图,加上标记会非常有用,因为它能清晰展示出数据间隔之间的逐步变化。在下面的例子中,我们要绘制MQL在特定某一周的增长,把客户的不同来源划分成9个种类。添加标记有助于分清不同日期之间的数据变化,从而更容易得出到底哪种渠道增加客户的效果更好。
之前:
之后:
5)展示累计数据
如果你想要展示累计的增长,就用累计后的数据来绘图。在下面的例子中,第一张图表的信息告诉我们的可能是“我们在这个时间段的后半部分新增了更多的MQL ”。第二张图, MQL总量增加的变化更为明显:总共新增了超过1500个 MQL ,而且随着时间的推移新增的数量加速增长。
之前:
之后:
6)删去多余的数字
不是所有的数据都要放在图上。删掉那些性质不明确的或者跟你要解答的问题不相关的数据。
只要记得把握好分寸来清理报告即可。不要因为有些数据不能展示出你想讲的故事而删除它们。
之前:
之后:
7)画出目标线
原始数据很好,但它有时候并不能说明一个完整的故事。比方说,你这个月生成了500 MQL 。干得不错……但是那又能说明什么呢?跟你之前所定的目标相比如何?添加一条目标线,可以帮助你的团队更加明确你们的表现跟期望之间的关系。
之前:
之后:
8)堆叠数据
过多的数据可能给人招架不住的感觉 。可视化的堆叠能更容易看出不同类别间的总体趋势,分组图更容易比较同一个类别的不同的单个数据。根据你想要回答的问题,选择最合适的方式。
假设你在绘制每个月的客户增长图,根据客户所在的不同行业来分类。你的目标是比较单个月的不同行业的客户增长。你可能会遇到一个问题:4月份我们的高等教育或者生物科技的客户是不是增长得更多?
在一个堆叠图表中,很难对某个月的不同行业的数据进行比较 。在这种情况下,最好使用一个分组条形图,用来表示在某个时间段内的单个值的大小更为明显。另一方面,如果你想把重点放在展示某个行业的客户增长对总体增长的贡献,一个堆叠图表能把汇总数据表示更清楚。
之前:
之后:
9)调整所用的配色方案
我们不一定都是艺术家。但我们中的大多数人都可以判断出某个配色方案的使用是否恰当。如果你展示一组数据,有几个选项,就选择一个配色方案,能够明确辨别出不同的选项。 否则,数据的呈现将毫无意义。
之前:
之后:
专业提示:用不同的颜色来区分报告里的不同类别。例如,你可能用绿色表示有关交易或机会,而用蓝色或黄色来为与市场相关的填色。
10)调换坐标轴
调换你的X轴和Y轴可以使你的图表展示一个完全不同的故事。在下面的例子中,我们要用图表来展示客户的初始来源和客户生命周期的阶段数据。
在“之前”这个截图上,一个重点可能是绝大多数的客户都是通过线下渠道产生的。然而,很难看出线下渠道发展的客户在每个客户生命周期的比例。
调换图表的X轴变量,使我们能够更深入地分析我们已有的内容。 “之后”的这幅图更加清楚地显示了离线渠道在开发新客户上所起的巨大作用。尽管这两个图表都展示出有操作性的重点,但是更重要的是明确你最初的问题。很多时候,调整X轴变量后的,你会找到更好的答案。
之前:
之后:
之前:
之后:
现在你已经知道怎么让你的数据吸引眼球了,并且能让你的报表达到一个更高的水平。衷心希望你以后再也不会把一个难以理解的图表呈现给你的老板了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05