
知名金融业负责人曾在采访中表示,大数据正在开启一次重大的时代转型,将在经济社会、政治军事、医疗卫生、科学研究等领域引起重大变革,其影响力也已经全面渗入金融业,推动移动金融、互联网金融等新的金融模式不断涌现,传统金融正向信息化金融快步迈进。这句话道出了金融业在移动互联网时代的发展方向老牌金融企业都在循着这一方向努力。这股愈演愈烈的潮流给金融业带来的不仅是经营模式的变革,还有从业岗位的变化。一个新兴的职位――项目 师将成为金融行业的香饽饽,发挥越来越重要的作用。如何主动应对大数据时代信息化金融带来的机遇与挑战,与时俱进、面向未来地推动金融教育和金融人才培养,是当前金融教育工作的重要课题。
数据分析人才推动金融领域发生巨大变革
我国金融领域信息化起步较早,尤其是从改革开放初期到上世纪末,信息化已经成为金融改革工作的一场革命性变革,为我国金融体制改革和发展打下了坚实的基础。目前,我国金融领域信息化已经由辅助阶段、支撑阶段逐步发展到引领阶段和融合阶段。国家金融基础设施和各商业银行、证券公司、保险公司的业务交易系统,每天都实时运转着海量数据,同时,更有庞大的历史数据作为分析和决策的支撑,大数据在金融领域的应用价值日益显现。时事所趋,项目数据分析师的出现,成为金融行业不可或缺的数据分析人才。项目数据分析师(CPDA)通过对数据的合理共享和利用以创造巨大的财富,将掀起信息技术革命的新浪潮,带动新的产业发展,对研发、生产、流通和社会管理等领域都有重要影响。数据分析所代表的不仅是一种技术手段的创新,它同时意味着所有行业的发展战略与商业运行模式甚至人的思维方式都将发生巨大变革。
新时代的项目数据分析师做什么?
实际上,数据分析的工作一直没有间断过,只不过,现在这项工作的内涵早已不同以往。最初,金融对数据的处理更多只是“收集”,比如收集客户的个人信息,客户的需求信息等。这些数据集中存储在金融的数据信息部门,基于数据的研究很少,电子化程度也不高。进入互联网时代,金融业加强了对数据的开发利用和分析,开始运用各种电子表格和运算手法来分析客户。尽管如此,这一阶段的数据处理仍然面临一个问题――研究的成果比较粗浅,很难回应企业的商业需求。因为营销部门和数据信息部门的人都不太清楚数据到底能解决什么问题以及如何解决。 而进入数据量爆发的移动互联网时代,数据开始被视为生产要素,专业的项目数据分析师也承担着更艰巨的任务:首先,他们必须能够建立统计模型并进行多维数据分析以掌握用户的行为方式;其次,他们整合的数据要能横跨整个组织结构,并运用综合的、可视化的数据反映客户活动的情况,以便他们进行调整;第三,他们必须形成一种汇报和管理信息的机制,可以及时回答业务经理们提出的问题,以验证和调整产品方向;此外,数据分析对管理层的决策起着重要的作用,决定着金融企业未来的发展方向,还要从数据分析中了解盈利的能力,需要基于数据分析提出新的产品创意。而且,上述这一切都必须以收益优先的原则为导向,以提供决策参考为目的。
扎实做好大数据时代的金融教育与人才培养工作
大数据时代信息化金融的发展,对当前和未来的金融从业者提出了更高的要求。金融业与教育业应进一步转变观念、主动应对、加强合作,从大处着眼,小处着手,大力开展大数据时代的金融教育和人才培养,为我国金融改革发展做好人才储备。2013年12月,由中国商业联合会数据分析专业委员会主办的数据分析行业十周年活动中邹东生会长谈到:任何一个行业的发展都离不开专业人才的培养,作为数据分析行业的重要组成部分,项目数据分析师在社会经济运行中具有重要地位,属于高端技术人才。一般而言,数据分析质量的高低反映着一个国家经济管理领域的发达程度,而数据分析人才的数量和质量又决定着数据分析的质量。我国数据分析行业人才从无到有的过程离不开中国商业联合会数据分析专业委员会一直以来的努力。大数据时代的特点和金融发展的趋势,充分认识具备现代科学文化素质的人才才是最稀缺的资源。要未雨绸缪,早做准备,重视现代金融人才培养,特别是挖掘和培养既懂业务又懂技术的复合型人才。
我们要看到,大数据时代和信息化金融的发展已经模糊了金融业与非金融业,以及银行、保险、证券之间的界限。因此,金融教育和培训工作必须坚持开放的培训理念,加强部门、行业、地方之间的协调与合作,推动教育资源共享。
我国金融人才发展整体水平与发达国家相比仍有一定差距,与本国经济金融发展的需要相比也存在一些不适应的地方。未来的36年,即到新中国成立100周年之际,将是我国金融改革发展的重要战略机遇期,面对新形势、新任务和新要求,金融部门应进一步增强责任感、使命感和危机感,牢固树立人才是第一资源的理念,找准工作切入点和着力点,从小事做起,从本单位、本学校做起,扎实推进金融人才队伍建设。
根据《国家中长期人才发展规划纲要(2010~2020年)》,人民银行会同银监会、证监会、保监会联合印发了《金融人才发展中长期规划(2010~2020年)》,明确了近十年金融人才发展指导思想、战略目标和主要任务,强调“加强教育培训,提高金融人才素质”,提出了金融人才队伍建设的九项重点工程和若干政策措施,并逐步取得成效。“不积跬步,无以至千里;不积细流,无以成江海”。要实现我国金融改革发展的战略目标,金融教育任重道远,国家高度重视金融教育培训工作,金融教育培训工作者潜心致志投身实践,为中国金融事业造就高素质的人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30