
大数据给银行画了一张怎样的蓝图?
比尔·盖茨曾说:“世界需要的是银行服务而不是银行本身。”在“互联网+”时代,搅动银行业的互联网,除了带来互金业务,还带来了以大数据、云计算为核心为新工具。而这些工具,无疑正在颠覆银行的面貌和模式。
比尔·盖茨所言得到了印证,不过,银行也早已意识到了银行服务的永恒性,积极转型,正在进行的“三转型”:
1.经营模式从“以产品为中心”向“以客户为中心”转型;
2.营销模式从“粗放营销”向“精准营销”转型;
3.服务模式从“标准化服务”向“个性化服务”转型。
可以说,每一项都与大数据息息相关。
围绕“大数据”的课题,重庆银行目前正在打造自己的“大数据金融实验室”,并且拉来了具有大数据专业技术背景的数联铭品,以及具有丰富集团资源和多元化场景资源的知名上市公司成都三泰控股集团股份有限公司,构建起“互联网+金融+大数据”的合作模式,试图挖掘大数据更深层次的价值。
大数据是银行业务开展的发动机
大数据对于商业银行的重要性已经不言而喻。作为现代金融信用创造的基石,大数据成了传统银行与新兴"互联网金融"更加重视的宝藏。
然而,大数据在国内的发展其实只是处在初始阶段,以前不可搜集的信息变成“可搜集”、且搜集的成本大大降低的阶段,还不能做到完善而真实、甚至能够作为一套可供独立分析数据模型的程度。
以互金公司为例,单纯的依靠互联网信息去构建一个比较完整的、作为机构判断和决策的公司有点不靠谱,这也是为什么P2P公司既不能有效解决融资成本,又不断曝出违规和跑路事件的原因。
而对于传统银行与互联网公司而言,都希望借助大数据创新更多业务,从而满足客户的更多需求。然而,由于两者的“出身”和成长环境,以及由此所养成的“性格”差异,所以,必须要去寻找第三方、第四方数据去进行补充和匹配,才能够进一步判断这些大数据的准确性,因此相互合作补充成为一大趋势。
从这个角度看,对于大数据建设而言,重庆银行、数联铭品及三泰控股三者形成的“铁三角”关系,使得数据链条更稳固,也更可持续。
首先,看重庆银行方面。其实与线上数据相比,银行手中掌握的信息相对更全面和准确。银行出于监管,法律与保护客户利益的需要,保存客户大量的交易流水,并通过客户对本行持有产品的使用、信贷情况、投资理财表现,对客户更了解。而且,银行既有数据和客户通常具有高价值的金融属性,因此可以看出,重庆银行在三人关系中,可以提供高质量的数据。
再看数联铭品,其是行业领先的大数据金融风险管理专家,拥有强大的数据科学家团队和金融专家团队,更有基于大数据的风险管理应用研发能力。与淘宝、天猫累积用户数据不同,数联铭品是企业数据方面的专家,他们正在全面打造创新型小微信用风险大数据评估云平台,而这也与重庆银行关注小微企业的方向不谋而合。
而合作的第三方三泰控股,则带来了更为安全的软硬件。三泰控股长期致力于为银行客户提供专业的金融自助设备、金融安防服务、金融服务外包和软件技术开发集成服务。
三方在大数据方面都各有优势。对于重庆银行而言,组建这样的团队,对其开展和创新业务提供强有力的支持。
大数据战略实施要有立足点
都在讲利用大数据,尤其是新兴的互联网金融机构,把大数据当成了创业创新的故事主角。然而只有极少数公司已形成清晰稳定的盈利模式,并具有长期可持续发展能力。与此相反,一批又一批表现亮眼、获得若干轮融资的应用软件最终无疾而终,还有大量正在存续的公司,尚处在赔本赚吆喝找投资者接盘的状态。
为什么会如此?原因其实很简单,这些企业被束缚在了大数据的硬币两面——数据大,也意味着利用起来难度更大,一些企业犯了胡子眉毛一把抓的毛病,对其无从下手。
而从当前的经验看,场景化或许是输出大数据宝藏的通道。一如三泰控股在“铁三角”关系中,不仅是安全卫士的角色,缘由是其积极布局社区服务平台,成功打造了“速递易”、“金惠家”、“金保盟”等社区流量入口,初步形成社区商业大数据生态体系,构建了丰富的商业场景和特色化的社区生态雏形。
这或许是重庆银行及其合作方更为看重的资产。重庆银行及其合作方已经把搭建“社区生活金融服务平台”作为主攻方向,而在这方面,会将以三泰控股已布局的社区为原点,围绕社区多元化的生活消费需求布设交易场景,比如线上商品推广销售、线上医疗问诊、线下快递物流等,嵌入重庆银行在支付、缴费、理财、消费贷款、金融资讯等方面的金融服务资源,结合数联铭品的大数据分析应用能力,构建和运营集生活服务与金融服务为一体的社区O2O服务平台。
此外,在普惠金融的理念驱动下,三家合作方将建立“家庭消费金融服务品牌”作为下一步的工作重点。这一业务,也将应用大数据分析金融消费者的行为特征,研究以家庭为单位的消费群体,尝试家庭数字画像,构建家庭信用体系并探索在消费信贷领域的应用,逐步完善构建服务于家庭的综合化金融服务方案。
大数据是个宝,懂得它的人才能享受到,或许你已经收到大数据发出的邀请了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01