
大数据与可视化的重要性
什么是大数据?数据可视化如何帮助企业更好地利用数据资源?一些人知道大数据的真正含义,然而其他人声称自己懂大数据,只是为了让他们看起来并不低人一等。尽管大数据是一个热门话题,但是对许多企业和数据专业人员来说,它仍然很难理解。Kimberly-Clark的全球总监Robert Abate,在“数据可视化的智慧”中讨论人们对大数据的无知。他认为,大数据话题和大数据的神秘就像青少年的人际关系问题。他说:“每个人都在讨论大数据,但是没有人真正地知道如何去处理。这是许多传言的来源。每个人都认为其他所有人都在研究大数据,所以都说自己也在研究。”
然而按定义来说,什么是大数据呢?很明显,大数据是指大量的能够收集、存储的原始数据,经过各种分析可以揭示企业的行为模式和发展趋势,尤其是消费者的。它可以用于最大限度地发挥业务潜力。这就是Robert Abate在演讲开始时明确指出的一点。他说的重点是,通过数据可视化能够有效地利用大数据。
为什么大数据如此重要?
他说,大数据对企业那么有用是因为它可以给企业的许多问题提供答案,而这些问题他们先前甚至都不知道。换句话说就是它提供了参考点。有了这样大的信息量,公司可以用各种它们认为合适的方法重新处理数据或进行测试。这样,就能用一种更容易理解的方式查明问题。收集大量数据,并在数据中发现趋势,使企业能够更快、更平稳、更有效地发展。这也可以让它们在利益和名声受损之前排除一些问题。
没有数据的帮助,企业采取的无数行动都可能威胁、损害或彻底毁灭企业。数据就像公司呼吸的空气。正如人们没有氧气不能生存一样,公司没有维持生存的必要数据也不能存活。没有这种空气,公司将会窒息而死。
每家公司都在使用数据。一个公司使用数据越有效,它的潜力就越大。这样的真理众所周知,但是据Abate先生说,许多企业还没有真正领悟这简单的思想:
“我们面临的一部分挑战是如何向企业说明数据能够做什么,业务如何成为真正的主题。我们不得不解决如何进行数据沟通和怎样与它们创建直接联系。”
大数据,尤其是跟信息图表和可视元素用在一起时,能够更快地得到问题的答案。这是一个理想,因为公司从来源中获取信息越快,获得答案就越快。他说,只是拥有更多信息并不能产生速度。没有人处理这些数据让它们更有意义,那么它们仍然是原始数据,没有任何价值。更多的人处理数据不等于有更多的优势,同样,员工越多不会提高生产力,反而会阻碍生产效率的提高。
如果一个组织能够将更多的事务有效地进行可视化显示,那么他们可以提高认知能力。Abate先生打比方说,许多人都在工作,他们只使用一台电脑显示器,但一台电脑显示器只能做那么多:它有局限性。这使得个人不能够提高他的潜力。如果一个人有两台电脑显示器甚至三台,他们解决各种问题以及得出结论的能力将会提高。如果他们有更多的资源,他们也会更好地利用自己的时间。当涉及到大数据时,“一张图片胜过千言万语”还不足以说明图片的重要性。人们很容易地以可视的或物理的角度观察数据,它比看表格容易的多。
他给了一个简单的解释:“简单地说,如果西南部的销售额下降,人们可以使用另一台电脑或电话查到西南地区的天气。这样,人们会意识到西南部有一场暴风雪,这就解释了为什么这个星期的销售额骤然下跌了。因为很明显,如果人们不能到达商店,他们就不会买东西。”
为什么突然依赖大数据?
大量的手机、平板电脑、翻转电脑、云计算及传感器和物联网的出现,产生了人们不可想像的数据量。根据演讲资料的揭示,这两年产生的数据量,超过了此前的历史上的数据量。虽然,20世纪50年代就有计算机网络,但数据量激增是近年的事情,人们将更会注意到大数据的力量。
列举更多的冲击值。Abate先生的幻灯片显示:
每60秒,至少98000条推特出现在推特网上;
每60秒,Facebook更新69500条动态;
每60秒,1100万即时信息被发送;
每60秒,有698445条谷歌搜索;
每60秒,至少1亿6800万封电子邮件被发送;
每60秒,1820TB的数据被创建。
这也难怪,为什么过去的两年时间里产生的数据量,就超过了历史上其它时间的总和。
但是,如果没有方法使信息形成数据湖或其它的形式,所有这些信息都是无用的。
充分利用数据
了解数据具有的特点是成功使用大数据的关键。人们都知道“了解你的客户”,会使公司营销有更高的成功率。
他给出了一个案例,他的团队帮助他们的客户整理数据。他们从数据集中删除了任何不相关的或离群的数据,从而缩小到一个关键问题或用户信息统计。这样,他们就能分辨出哪一类产品出售的多,哪一类产品没有出售,因此可能要被淘汰。他们关注4个主要的数据:收入、频率、价值、年期。Abate先生强调,同一时间,在任何给予的可视化范围内,超过4个数据就会让人更难跟踪。通过淘汰没有出售的产品,他们正在减少浪费来增加未来的收入。但是没有数据可视化,他们不可能完成这项工作。
数据可视化是关键。通过增加数据可视化使用,企业能够发现他们追求的价值。创建更多的信息图表,使用更多的资源,让他们更快地获得更多的信息。这使他们意识到他们已经知道很多信息,而这些信息先前就应该是很明显的。这就增加了部门的作用,因为他们能够提出更好的问题。它创建了似乎没有任何联系的数据点之间的连接。人们能够分辨出有用的和没用的数据,这样,就能最大限度的提高他们的生产力,让信息的价值最大化。
利用大数据资产对任何公司来说都是很重要的,不论公司大小。当大数据的潜力通过可视化达到最大时,之前未看到的趋势就很容易被发现。正如Abate先生谈到的,这些趋势可以提供“信息”并能转化成有价值的“见解”,如:谁是他们的客户,他们有多少客户,谁是高端客户,谁是低端客户等等。
最后,他讨论一些关键注意事项。他说,大数据可视化是未来的发展趋势,使用更多的工具来获得更多的见解也是必须的。他列举了一些最佳实践方法:建立迭代、每个图形最多含4个主要因素、可视化动态情形、以及预防极端情况的网络规模升级计划。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18