
数据湖将如何改变大数据?
世界对数据湖的兴趣依然在不断增长,但如果说对数据湖的宣传都是的话,这就贬低了数据湖真正的能力。“数据仓库”和“大数据”等概念都逐渐深入人心,但“数据湖”仍然是让IT和业务相关者头疼的一件事情。
随着人们对于数据湖的清晰定义、使用案例、最佳实践等信息的需求不断增长,IT专业人士需要一则明确的数据湖指南,回答以下问题:数据湖是什么?我们应该如何利用它?数据湖又将如何改变大数据呢?
1.定义及观点
数据湖成为了核心数据架构中发展得很快的一环,但IT专业人士常有疑惑,数据湖究竟是一个架构策略还是架构的目标呢?实际上并没有清晰的界限,但仍然有方法来解决定义的问题。数据湖是一个中央储存库,为多种数据工作负载储存企业数据;通过数据湖,终端架构可以得到解决,同时数据结构相关的决策也是建立数据湖时的关键。
数据湖被越来越多的采用,而它的实施分为四个关键的阶段:
技术评估。通过进行大数据实验项目,关注几个特定的业务目标和成果,数据湖的使用者可以对这项技术进行测试,并熟悉Apache Hadoop环境的管理。
做出反应。在这个阶段,各公司开始利用Hadoop来解决现有架构的低效率问题,确立清晰可测的业务机会。此外,这个采纳过程对于IT效率的提高也是非常关键的。
主动利用。通过为分析项目合并数据以及利用Hadoop获得经济的可拓展性这两种手段,各公司可以在一个单一的中央存储中管理大量新出现的数据源,例如物联网、社交媒体和非结构化的数据。
建立核心竞争力。随着大数据成为IT战略的核心组成部分,各公司最终能够达到发展的高峰,消除所有业务应用和分析应用之间的隔阂,重新建立一个单一的企业平台。
2.数据湖的组织
得益于Hadoop的灵活性和可拓展性,我们今天能够保存、分类、探索并利用的数据类型比以往任何时候都要多。但避免数据湖成为数据沼泽的关键在于数据治理,数据的组织和安全性也是决定数据探索成败的关键。一个清晰而有条理的数据组织(通常是按类目或者按数据用法划分)能够帮助Hadoop工程师建立更加完善的技术决策,帮助分析师和数据科学家从数据中获取真正的洞察。
3.统一数据探索、数据科学和商务智能
对于企业BI需求、数据探索和数据科学的支持是推动数据湖部署的主要因素,这三项技术能将原始数据用于机器学习算法和统计功能。因为敏捷方法学为企业级BI提供了自适应途径,数据湖就能够落实更多具体的企业业务、性能指标和度量权值,同时可用于储存历史数据。
充满竞争的商业环境让人目不暇接,各公司必须认识到探索技术的关键作用,并认识到解答未知的重要性。这刺激了我们的需要,要把数据直接用于分析技术,产生意义重大的洞察、为企业创造附加价值。
4.成功的关键
要帮助企业从他们的数据湖中实现最大化效益,就必须要考虑以下几个要素:
从长远角度考虑数据。在开始一个数据项目时,必须仔细考虑数据在今后其他应用中的可重用性。要明白未来新产生的数据需求往往是不可预知的,了解这一点后公司就可以更好地相应准备并利用起他们的数据。
先确立数据治理结构。数据治理被应用在了整个企业的数据和信息政策当中,所以在考虑数据湖时也不应该例外。数据治理规范了企业中的每个人对数据湖的使用,并最小化了发生错误和不当数据管理的可能性。
预先解决安全问题。以数据为中心的安全保护提供了从整个数据的生命周期来看数据的宏大视角,此处的关键要素就是从第一天开始就正视安全问题,确立好哪些数据可以引入数据湖,并为数据湖中的各类数据制定使用权限。
尽管数据湖在大数据领域还是一个比较新的词汇,但它已经成为了企业级IT架构和整体数据战略的重要部分。数据湖战略拥有合理的架构,能够和数据科学以及成本低廉、拥有商业基础的机器学习分析完美结合。对于数据湖核心概念的了解能够帮助企业更好地利用并保护自己的数据,同时提高通过数据进行探索的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28