
面向云数据中心的现代数据管理架构
在降低成本和提升效率的需求的驱动下,数据中心的变革逐步加快,其功能演进可以总结为三个发展阶段。传统的数据中心,特征是持续叠加软硬件设施,业务上线效率低下,缺乏灵活性,难以管理,导致综合成本越来越高;数据中心发展的第二阶段中,虚拟化技术得到了广泛的应用,大量部署虚拟化平台,实现业务的快速交付,但随着业务规模的扩大,也出现了扩展性以及存储层性能瓶颈等问题;第三阶段云化数据中心是当前及未来一段时间内用户 重点规划建设的阶段,为实现业务按需快速上下线,实现统一管理和快速扩展,用户开始选择统一规划私有云数据中心和公有云解决方案,或者是二者皆有的混合云 架构。
云化的数据中心正在努力满足各种业务多种多样的动态需求,包括采用先进的技术和架构,改善基础设施的性能、规模和经济效 益。虚拟化数据中心阶段,服务器虚拟化技术虽然解决了计算资源利用率和应用统一管理的问题,但是与传统数据中心一样,还是烟囱式架构,没有解决存储层的高 可用及性能瓶颈问题。在基础架构的存储系统设计时,服务器、存储、网络、能源与管理等组件交织在一起,数据中心将面临着巨大的成本压力和管理挑战。而如何 更有效将服务器与存储相连,实现物理环境和虚拟环境的互通,满足云化趋势下数据中心对弹性、敏捷、绿色的需求通常需要对数据中心的设计和管理进行全盘的改 造。
近两年,许多数据中心CIO和云服务提供商已经向人们展示,更加先进的软件定义数据中心、分布式存储技术及其产品已经日 趋成熟,各种上层应用使用分布式文件系统提供存储资源,分布式存储技术在IT行业已经得到广泛的使用和验证。除了技术上的革新,从基础架构的硬件设计上进 行数据中心改造也越来越多的被提到,越来越受业内关注的超融合架构就是其中一种,超融合创新的将计算资源和存储资源整合到一个设备中,实现了数据中心基础 架构的简化。
针对现代云数据中心在管理架构上面临的痛点和难题,爱数以融合的理念,为云数据中心提供从融合计算与存储、融合服务器虚拟化数据管理到融合桌面虚拟化数据管理等方面的智能数据管理解决方案。
一、融合计算与存储
AnyVM超融合系统在一个节点中融合了计算、存储、虚拟化、管理等资源和技术,基于弹性开放式平台,将多个节点通过网 络聚合起来,实现模块化的无缝扩展,形成统一的资源池,为上层应用提供高性能存储服务支撑。AnyVM在一个易于部署、管理并且高度集成的融合系统中,为 用户数据中心实现诸多优势,有效降低用户整体基础设施TCO。
弹性开放式平台
爱数AnyVM创新超融合架构存储,针对云数据中心基于分布式系统的Scale-out横向扩展架构,可实现简单的在线 扩展,用户可根据现有需求进行定制,降低初始采购成本。支持单节点细粒度扩展,实现性能和容量同步增长。在有需要时进行逐步扩展,避免叉车式升级,最大程 度保护用户投资。整个扩展过程IT管理员只需要添加设备节点即可在线动态的来扩展整个云数据中心,保障了在线扩展计算能力和存储能力的同时,对上层业务无 影响。
高性能存储服务支撑
爱数AnyVM采用分布式架构,节点分散处理IO,解决集中式存储控制系统下的资源争用导致的性能瓶颈。计算和存储的融 合,有效缩短IO路径;结合企业级SSD用于缓存加速,最大限度的发挥闪存优势,提升IOPS,解决云数据中心对高性能的需求,提升用户体验。独有的 ECFS分布式架构进一步提高了数据中心私有云的灵活性扩展能力和数据安全保障能力。AnyVM为云数据中心提供多副本技术,数据副本随机分散在不同的节 点之间,能充分保证数据安全,实现数据、控制虚拟机和节点等多层面的高可用。采用智能、高效的数据自修复技术保证数据一致性和业务的连续性。
降低整体基础设施TCO
爱数AnyVM创新超融合架构存储,将计算、存储无缝集成于一个或者多个节点中,无需调谐,单个团队在数小时内可实现基础架构部署,提升IT响应速度。通过丰富的Web管理功能;多维度,多方面的实时监控,多节点集中管理能够有效减低运维复杂度,降低拥有成本。
初期建设成本在同等性能下,与传统物理服务器+存储采购低60%,比传统服务器虚拟架构低30%,管理人员成本在同等条件下降低40%。
二、融合服务器虚拟化数据管理
在传统数据中心计算与存储分离的体系架构下,虚拟机在服务器上创建,数据存储在 SAN/NAS存储设备中。这种架构已经不能满足云数据中心高速发展下不断变化的需求。爱数AnyVM结合当前数据中心云化的趋势,融合服务器虚拟化与数 据管理,为云化数据中心提供计算、存储、备份端到端的数据管理解决方案。
广泛的服务器虚拟化兼容
良好的产品生态链是客户使用体验的保证。聚焦数据管理,成就客户发展,是爱数多年来的愿景和使命,多年来爱数一直坚持 “开放、合作、共赢”的战略,扎根于IT生态的建设中。爱数AnyVM作为面向服务器虚拟化的超融合产品,积极与VMware、Ctrix、KVM等主流 厂商以及国内长天、华为等自主可控厂商虚拟化产品进行适配,努力搭建全面的产品生态链。
高性能存储服务支撑
计算与存储完美融合,充分利用服务器计算和存储资源,分布式架构,多节点并发IO,SSD闪存加速,多项优化技术可最大程度将服务器硬件的优势发挥出来,AnyVM超融合设备可为服务器虚拟化提供高性能服务支撑。
服务器虚拟化数据保护
基于服务器虚拟化下的AnyVM+AnyBackup组合方案,AnyVM让客户更加轻松和简便的管理整个平台的同时, 还能够实现整个数据中心计算性能和存储空间的灵活统一管理。AnyBackup给整个数据中心带来多个维度的数据保护方案,全面支持当前主流的服务器虚拟 化环境下的数据保护,降低因不同环境而需要多套数据保护方案带来的成本压力和管理复杂性;同时支持各种主流平台下的系统、数据库及文件数据的保护;针对云 数据中心,全面覆盖软件定义数据中心的数据保护范畴。
三、融合桌面虚拟化数据管理
传统的企业PC管理方式的复杂性,推动了虚拟化桌面(VDI)技术的兴起,但企业在部署VDI的同时也面临着投资成本、 可靠性、可扩展性、存储性能瓶颈、产品兼容性等一系列问题。爱数AnyVM超融合VDI解决方案,以软件定义的存储替代传统SAN架构,在保障性能和容量 的前提下提供了传统SAN不可比拟的高可扩展性、简便性和灵活性,真正为客户降低总体拥有成本(TCO),是VDI的理想选择。
广泛的桌面虚拟化兼容
VDI解决方案是一个综合性的解决方案,硬件涉及计算服务器、交换机、瘦终端等,软件涉及虚拟化平台、桌面云平台、操作 系统等。在规划方案时,如何选择互相兼容适配的产品是令用户最为头疼的事情。爱数AnyVM秉承开放的理念,与VMware、Ctrix、云端时代等国内 外主流桌面虚拟化厂商展开生态合作。广泛的桌面交付生态系统 ,支持异构客户端,用户在终端设备选择上具有更大的灵活性,支持Windows、Linux、Mac和智能手机等操作系统,为用户提供1+1>2的整体解 决方案。
高性能存储服务支撑
传统VDI解决方案中,启动风暴、后期系统扩容一直是整体解决方案的瓶颈所在。AnyVM通过计算和存储的融合,有效缩 短IO路径,采用企业级SSD用于缓存读写加速,有效提升IOPS,高效解决桌面云对于高IOPS的需求。弹性敏捷的分布式系统架构,让用户后期扩容,存 储不再成为性能瓶颈。
桌面虚拟化数据存储和保护
在基于桌面虚拟化下的AnyVM+AnyShare+AnyBackup组合方案中。爱数AnyVM通过和 AnyShare完美结合,将桌面云产生的数据独立于系统进行集中存储,既解决了云桌面因磁盘空间有限文档无法存储的难题,又实现云桌面系统和生产数据的 分离。用户可以通过AnyShare在任何时间(Any Time),任何地点(Any Where),任何设备(Any Device)访问所需要的文档资料;针对有特殊数据保护需求的用户,爱数AnyBackup为用户提供全方位的数据保护,在保护AnyShare文档资 料的同时,更可以保护客户桌面数据,让客户在任何时候都不需要担心数据的损坏的丢失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08