
日新登用户数(Daily New Users,DNU):每日注册并登录游戏的用户数。
解决问题:
*渠道贡献的新用户份额情况;
*宏观走势,是否需要进行投放;
*是否存在渠道作弊行为。
备注:
*周新登用户数为本周7天日新登用户数累计之和;
*月新登用户数计算同上;
*根据需要,可细分为自然增长用户(非推广期)和推广用户(推广期)。
日一次会话用户数(Daily One Session Users,DOSU):一次会话用户,即新登用户中只有一次会话,且会话时长低于规定阈值。
解决问题:
*推广渠道是否有刷量作弊行为;
*渠道推广质量是否合格;
*用户导入是否存在障碍点,如:网络状况、加载时间等。
备注:
*周一次会话用户数为本周7天日一次会话用户数累计之和;
*月一次会话用户数计算同上;
*游戏引导设计分析点之一;
*DOSU有助于评估新登用户质量,进一步分析则需要定义活跃用户的月一次会话用户数。
用户获取成本(Customer Acquisition Cost,CAC)=推广成本/有效新登用户
解决问题:
*获取有效新登用户的成本是多少;
*如何选择正确的渠道优化投放;
*渠道推广成本是多少。
备注:
*CAC计算要根据渠道来进行细分。
日活跃用户数(Daily Active Users,DAU):每日登录过游戏的用户数
解决问题:
*游戏的核心用户规模是多少;
*游戏产品周期变化趋势衡量;
*游戏产品老用户流失与活跃情况;
*渠道活跃用户生存周期;
*游戏产品的粘性如何(与MAU结合)。
备注:
DAU对于核心用户规模的衡量需要谨慎对待新登用户和回流用户在DAU中的变化情况,具体需要依据详细的DAU细分才能够了解用户规模和质量。
周活跃用户数(Weekly Active Users,WAU):截止当日,最近一周(含当日的7天)登录过游戏的用户数,一般按照自然周进行计算。
解决问题:
*游戏的周期用户规模是多少;
*游戏产品周期性(每周)变化趋势衡量。
备注:
WAU按照周作为一个周期来分析用户规模,利于在不同活跃用户规模的维度上发现问题和掌握游戏用户规模的波动。
月活跃用户数(Monthly Active Users,MAU):截止当日,最近一个月(含当日的30天)登录过游戏的用户数,一般按照自然月计算。
解决问题:
*游戏的总体用户规模是多少;
*游戏产品用户规模稳定性;
*推广效果评估;
*游戏产品的粘性如何(与DAU结合)。
备注:
*MAU层级的用户规模变化相对较小,能够表现用户规模的稳定性,但某个时期的推广和版本更新对MAU的影响也可能比较明显;
*此外游戏生命周期处于不同时期,MAU的变化和稳定性也是不同的。
日参与次数(Daily Engagement Count,DEC):用户对移动游戏的使用记为一次参与,即日参与次数就是用户每日对游戏的参与总次数。
解决问题:
*衡量用户粘性(日平均参与次数);
*什么渠道,什么用户参与频率较高;
*用户对产品参与频率是什么样的。
备注:
*一般建议30秒内重复开启记录为一次完整使用,不单独计量;
*周参与次数为用户一周对游戏的参与总量;
*月参与次数同上;
*日平均参与次数:该日平均每用户参与游戏次数。
计算公式:日参与次数/日参与用户数;
*通过对不同参与次数的分布分析,可帮助分析版本更新影响,推广渠道刺激。
日均使用时长(Daily Avg.Online Time,DAOT/AT):活跃用户平均每日在线时长。即:日总在线时长/日活跃用户数。一般的精略计算公司:AT=ACU*24/DAU
解决问题:
*用户的游戏参与度如何;
*产品质量把控指标:
*渠道质量如何;
*与单次使用时长结合分析留存和流失问题;
*用户持续游戏能力如何。
备注:
*平均单次使用时长:一定时间内,用户平均每次游戏使用的多长时间=时间内用户总使用时长/参与次数;
*帮助分析作弊行为,版本粘性和效果;
*根据需要,可以观察用户每周,双周,月的平均使用时长情况,了解游戏的粘性。
用户活跃度(DAU/MAU)
percentage(from rainbowgrp.co.uk)
解决问题:
*用户的游戏参与度如何;
*游戏人气是否增长、衰退、稳定;
*用户活跃天数如何。
备注:
DAU/MAU理论不低于0.2,0.2*30=6天,即用户登录次数不少于6天。
用户留存(Users Retention):统计时间区间内,新登用户在随后不同时期的登录使用情况。
次日留存率(Day 1 Retention Ratio):日新登用户在次日(不含首次登录当天)登录的用户数占新登用户比例。
三日留存率(Day 3 Retention Ratio):日新登用户在第三日(不含首次登录当天)登录用户数占新登用户比例。
七日留存率(Day 7 Retention Ratio):日新登用户在第七日(不含首次登录当天)登录用户数占新登用户比例。
月留存率(Day 30 Retention Ratio):日新登用户在第三十日(不含首次登录当天)登录用户数占新登用户比例。
留存率需要进行长期跟踪,根据需要可设定30日、60日或者90日。
解决问题:
*用户对于游戏的适应性如何;
*评估渠道用户质量;
*投放渠道效果评估;
*用户对于游戏的粘性如何;
*新登用户什么时期流失会加剧。
备注:
*留存率一定意义上代表了新登用户对游戏的满意度;
*关注留存率的同时需要关注用户流失节点;
*留存率的统计和计算也可以按照自然周和自然月进行分析,例如上周新登用户在随后几周的留存情况分析;
*次日留存率代表了游戏满意度,主要反映游戏初期新手对于游戏引导和玩法的适应性。
用户流失(Users Churn):统计时间区间内,用户在不同时期离开游戏的情况。
日流失率(Day 1 Churn Ratio):统计日登录游戏,但随后七日示登录游戏的用户占统计日活跃用户比例,此定义按需求可延长观测长度,见备注;
周流失率(Day 7 Churn Ratio):上周登录过游戏,但本周未登录游戏的用户占上周周活跃用户比例;
月流失率(Day 30 Churn Ratio):上个月登录过游戏,但本月示登录过游戏的用户占上个月月活跃用户比例。
解决问题:
*活跃用户的生命周期是多少;
*哪一个渠道的流失率比较高;
*拉动收入的运营手段,版本更新对于用户的流失影响是多大;
*什么时期的流失率比较高。
备注:
*流失率+留存率不等于100%,此处留存率遵循上文定义标准;
*日流失率的定义可发根据需求进行调整,比如统计当日登录游戏,但随后14日或者30日未登录游戏的用户数;
*流失率在游戏进入稳定期是值得关注的,稳定期的活跃和收入都比较理想,如果流失率波动较大,就需要引起警惕。需要仔细关注是哪一部分用户离开了游戏,流失率作为一个风向标,具有预警作用。
目前移动游戏创造收入有三种形态:
*付费下载
*应用内广告
*应用内付费
此处重新点考虑第三种情况进行指标定义,以下描述不分开描述充值和消费,仅以付费统称。
月付费率(Monthly Payment Ratio,MPR):统计时间区间内,付费用户占活跃用户的比例。一般以月计。计算公司:MPR=APA/MAU 其中APA为月付费用户数(见下文)
解决问题:
*游戏产品的付费引导是否合理;
*用户付费倾向与意愿(需结合首次付费功能、道具、等级,整体分析);
*付费转化是否达到预期效果。
备注:
*MPR包含历史付费用户在统计时间区间内再次付费的用户以及在统计时间区间内新转化的付费用户;
*MPR的高低并不一定代表游戏付费用户的增加或者减少;
*游戏类型的不同,相应的MPR表现也是不同的。
活跃付费用户数(Active Payment Account,APA):统计时间区间内,成功付费的用户数。一般以月计。如果按月进行计算,则有以下关系:APA=MAU*MPR 其中MAU为月活跃用户数,MPR为月付费率。
解决问题:
*游戏产品的付费用户规模如何;
*APA如何构成?如鲸鱼用户、海豚用户、小鱼用户的比例;
*付费用户的整体稳定性如何。
备注:
*APA包含历史付费用户在统计时间区间内再次付费的用户以及在统计时间区间内新转化为付费的用户;
*APA根据需求可细分为充值活跃用户和消费活跃用户。
平均每用户收入(Average Revenue per Uers,ARPU):统计时间区间内,活跃用户对游戏产生的平均收入。 一般以月计。
ARPU=收益/玩家数
月ARPU=收益/MAU
计算方式:游戏总收入除以游戏的总活跃用户数,一般按照月来计算,即ARPU=月总收入/月活跃用户数(MAU)
解决问题:
*不同渠道获取的用户质量如何;
*游戏收益贡献如何;
*游戏活跃用户与人均贡献的关系;
*游戏人增收益水平如何。
备注:
*严格定义的ARPU不同于国内认识的ARPU,国内ARPU=总收入/付费用户数;
*ARPU用于产品定位初期不同规模下的收入预估。
平均每付费用户收入(Average Revenue per Paying User,ARPPU):统计时间区间内,付费用户对游戏产生的平均瘕入。一般以月计。
ARPPU=收益/付费用户数
月ARPPU=收益/APA
解决问题:
*游戏付费用户平均的付费水平如何;
*付费用户整体的付费趋势如何;
*对鲸鱼用户的分析。
备注:
*ARPPU容易受到鲸鱼用户、小鱼用户的影响,分析时需谨慎;
*ARPPU与APA、MPR等结合可对付费用户的留存情况,特定付费群体的流失进行深度分析,保证付费质量和规模。
生命周期价值(Life Time Value,LTV)
生命周期(Life Time):一个用户从第一次参与游戏,到最后一次参与游戏之间的时间,一般计算平均值。
生命周期价值:用户在生命周期内为该游戏创造的收入总计。可以看成是一个长期累计的ARPU值。
计算方式:对每个用户的平均LTV计算如下:
LTV=ARPU*LT(按月计平均生命周期)
其中LT为Life Time,即生命周期,按照月统计,也就是玩家留存在游戏中的平均月的数量。
例如,一款游戏的ARPU=2元,LT=5,那么LTV=2*5=10元。
解决问题:
*用户在游戏中会待多久;
*用户对于游戏的贡献价值是多少;
*用户群与渠道的利润贡献如何(LTV>CAC)。
备注:
*ARPU遵循严格的定义术语,即总收入/总活跃用户数;
*LTV是针对活跃用户的计算,没有付费与非付费用户之分。
以下指标仅为移动游戏指标具有代表性的部分,在实际分析过程中,根据分析维度,可以进行指标的深入展开,比如收入分析部分可以加入回流用户贡献、持续付费用户贡献、付费留存用户、付费用户流失率、二次付费分析、用户付费周期转化等等。
另外部分常用指标未详细说明,此处仅列出部分说明:
PCU(Peak Concurrent Users):最高同时在线玩家人数
ACU(Average Concurrent Users):平均同时在线玩家人数
New Users Converstion Rate:新用户转化率(可根据渠道进行划分) Clicks->Install->Register->Login
K-Factor:K因子
K-Factor=感染率*转化率
转化率:当感染后转化为新用户的比率。
感染率:每个用户发送的邀请数量,一般取平均值。
若K>1,游戏用户群通过自传播增长较快;
若K<1,游戏用户群到达一定规模后就会停止通过自传播增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29