京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析助医院实现智能化人员配置
在这个信息化时代,我们的工作、生活方式乃至生存方式,都因为信息技术的不断应用和发展发生着深刻变革。人口和消费水平的增长都增加了对医疗机构服务消费的需求,随着老龄化的压力和慢性疾病的增加,迫使医疗机构不得不从利益层面上做出艰难抉择。
为减少重复性测试,医疗健康领域已经开始采用信息技术对看护计划和医疗助理进行优化。但在病人护理服务方面,信息技术仍然无法取代人力,就医院本身而言,近70% 的预算用于劳动力成本。护士、治疗专家和内科医生仍然不可或缺。
人力配置不当导致医疗失误
谈到劳动力成本,就不得不直面由于医疗行业逐步向商业化转型进一步增加的成本压力。我国医疗机构正在进行全面的医疗改革,持续的转型和经济压力在无形中增加了医疗机构运营过程中的成本变数。医疗机构最先想到的解决方案就是削减护士的人数,以此来降低成本压力。但如果对护士数量进行不当地削减,又会造成医疗事故、病人护理质量降低及其余护士工作超负荷等诸多问题,医疗机构甚至还需要面对由此衍生而出的,诸如员工因工作负担过重以致人员流失以及医疗诉讼等更为严峻的问题。
为解决这一问题,有些组织把护士与病人的比率作为进行人员配置的依据。早在一个世纪之前,美国要求医院接受医疗保险基金,确保 “ 有充足数量的认证注册护士、执业护士和其他人员,为需要护理的所有病人提供服务。 ” 目前加州和麻省制定了相关法律,对护士与病人的最小比率进行了规定。 2004 年,加州制定的手术室比率为1:1 ,病房比率为 1:6 。相关法律中还要求 “ 医院需保持病人敏度分级系统,必要时用来指导其他员工,将某些护理工作指定给具有注册护士执照的护士。在给护士分配护理工作之前衡量他们的工作能力并提供适当的职位, 同时将人员编制记录在案。 ”
2014 年,麻省也制定了护士与病人之间的最小比率,但该比率只适用于重症看护。另外其他 7 个州要求医院设立员工委员会对计划和员工政策负责(CT, IL, NV, OH, OR, TCX, WA) ,还有 5 个州要求有一定形式的公开和(或)公共报告功能 (IL, NJ, NY, RI, VT) 。 2015 年 4 月 29 日,众议员 Lois Capps (D-CA) 和David Joyce (R-OH) ,以及参议员 Jeff Merkley (D-OR) 引入了注册护士安全员工行动,要求加入的医疗机构需建立一个委员会,保证机构组成中至少有 55% 以上为一线护理护士,并为每个科室建立护士员工计划。
同时,相关医疗健康研究和治疗机构撰写了政策创新文件,通过对医疗文献进行评估,指出因护士与病人比率过低所造成的问题。大量研究证明,低比率对病人安全和病人恢复结果造成的诸多负面影响中,包括病人提前死亡和并发症等严重问题。
让我们回来看看全球和我国的对比情况。 根据卫生部现有标准,我国医院普通病房实际护床比不低于 0.4:1 ,每名护士平均负责的患者不超过8名。但目前临床一线的护士严重短缺,很多医院根本达不到这一标准。护士 长期处于工作超负荷、环境脏乱等恶劣状态下,人员流失严重,而这与我国日益增长的需护理群体形成严重矛盾。
信息技术能否药到病除?
综上所述,绝大多数机构会根据病人数量设置护士的编制。尽管前文中所提到的立法提供了一些设立编制的指导意见,但该比率并没有切实考虑到病人的需求。基于病人的数量进行人员编制的方式过于直接,且没有将病人的护理需求与病人诊断的相关敏感度结合在一起,更不能进一步挖掘出相关数据中有价值的指导信息。
此外,来自 HITECH (经济和临床医疗卫生信息技术)法案驱动的电子病历提供的病人数据,为病人的护理需求及所需要的员工技术进行了精确的评估。电子病历也同样应用于病人敏感评估,该评估数据也为病人及其护理需求提供了可靠而准确的评估,从而让医疗机构实现了更为精确的临床人员配置。
虽然,信息技术永远无法取代病人护理人员,但它为我们提供了一种更加智能化的方式,让这些员工可以以最有效的方式来帮助他们的病人。其他行业也可能会因为削减员工的数量导致给其消费者带来了负面的体验。但对于医疗机构行业来说,问题的严重性远远不是负面体验这么简单,因为,病人的健康和生命依赖于他们。因此,医疗行业机构只能持续地为病人提供更好的服务,别无他选。
正是因为要为病人提供更好的服务,所以医疗机构必须要保证护士免于超负荷工作以此避免不必要的医疗失误,真正实现为病人提供安全的环境。新的数字医疗信息技术,如电子病历、互联网医疗、远程医疗以及大数据分析的使用,正在改变医生、患者以及其他医疗行业相关人士之间的互动方式。依赖于最新的信息技术工具,医疗机构可以获得一种既可以满足病人需求,同时又能保护护理人员投资,更能有效地管理护理成本的好方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06