京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据背景下的中国电影
2015年全国电影票房突破440亿大关,同比增长48.7%。创下“十二五”以来的最高年度增幅;全国新开影城1490家、新增银幕7157块,银幕总数达31627块;城市院线观影12.6亿人次,人均观影次数达到1.7次/年(按城镇人口数7.7亿计算),同比增幅高达57.8%。
纵观中国电影的发展史,我们目前正处于一个电影“4.0时代”,2015年也是中国电影的“大数据”元年。今年开始,艺恩网、猫眼电影等一批专业电影大数据网站提供的大数据日渐专业,对电影进行“大数据”分析成为可能。互联网大数据工具的出现彻底改变了影视行业的生态链。之所以说2015年是电影行业的“大数据”元年,有一个标志性的事件,那就是10月份广电总局的实时票房数据平台上线,官方共识性的数据统计终于可以做到每日更新。广电总局的票房数据是在2005年开始通过《中国电影报》对外进行公布的,早期数据统计非常简陋。经过十年的努力,电影大数据终于迈出了重要一步。
自1905年北京丰泰照相馆拍摄了中国人的第一部影片《定军山》以来,中国电影整整走过了111年。电影“1.0时代”诞生了中国第一代和第二代导演,中国的电影先驱们让中国电影在起步阶段就紧跟世界电影发展潮流,拍出了一大批有影响力的作品。
1949年新中国成立后中国的电影进入“2.0时代”,在这期间电影基本上被国营电影厂垄断。电影被政治化,成为意识形态的工具。电影全部是国家投资,从出品方到制片方以及电影院都是国有。
在电影“2.0时代”中国出现了第三代、第四代和第五代的导演。
上个世纪末开始中国电影进入“3.0时代”,好莱坞用《真实的谎言》敲开了中国市场的大门,同时以华谊兄弟为首的内地民营电影公司也开始全面介入电影产业链。中国电影的总票房也从2000年的不足10亿发展到2015年的400多亿。这期间中国电影市场迅速发展,大量资本涌入,中外合作日渐增多,好莱坞大片开始强势冲击中国市场。而与之同时,中国电影工业体系却相对封闭和落后,数据不透明,信息不对等。无论是市场还是政府主管部门都迫切需要一套科学合理的数据统计系统来作为决策依据。
电影“3.0时代”是一个百花齐放的时代,好莱坞大片以及中国第五代和第六代、第七代导演开始各领风骚。代表影片有好莱坞的《泰坦尼克》、《阿凡达》、《速度与激情7》等以及陈凯歌带着《霸王别姬》戛纳封王,冯小刚用《甲方乙方》开启了贺岁档,张艺谋用《英雄》开启了国产片的大片时代。第六代和第七代也是一夜之间成名,宁浩的“疯狂系列”创造票房奇迹,徐峥的《泰囧》让他受到了泰国首相接见,而郭敬明在争议声中默默做出了“小时代”四部曲。
目前中国电影进入全新的大数据“4.0时代”,中国电影市场的蓬勃发展与美国二三十年代的“口红效应”下催生的好莱坞大繁荣不完全一样。20世纪二三十年代的经济危机,那时几乎所有的行业都沉寂趋冷,好莱坞的电影却乘势腾飞。中国的这次电影行业大繁荣既有经济结构调整的大背景,也有2003年以来的中国政府实行的产业改革提振,其中最重要的就是“互联网+”概念催生的大数据的出现。它不但衍生出像电子票务、网络大电影等一大批新兴行业,同时也让中国的电影产业获得了蓬勃发展。
而且中国目前三四五线城市具有广阔的增长空间,“小镇青年”成为改变市场格局的一只重要力量。中国观众的观影主流人群也从一线城市的“都市白领”转向了“小镇青年”,从70后、80后转向了90后。他们的审美以及价值观也被反映到了电影创作上,同时电影的互动性和娱乐性加强,热门“IP”效应显现。电影评分系统的出现让观众在选择观看影片时有了更加直观的参考数据,从而也直接影响到电影票房。
未来中国文化市场的空间不可限量。去年11月,国家提出的“供给侧改革”都与互联网“大数据”的发展有关。对于国内外的电影投资者和从业者来说,因为大数据导致的行业透明,对影视行业的投资也会越来越大。互联网大数据是电影行业的一大步。它体现的是公平性和科学性,它带来的是决策的理性以及资本利用的高效。
想起了《一代宗师》里的一句台词:“一念既出,万山无阻”。今天,我们站在中国电影“4.0时代”的风口,笑看大风起兮云飞扬!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08