
大数据背景下的中国电影
2015年全国电影票房突破440亿大关,同比增长48.7%。创下“十二五”以来的最高年度增幅;全国新开影城1490家、新增银幕7157块,银幕总数达31627块;城市院线观影12.6亿人次,人均观影次数达到1.7次/年(按城镇人口数7.7亿计算),同比增幅高达57.8%。
纵观中国电影的发展史,我们目前正处于一个电影“4.0时代”,2015年也是中国电影的“大数据”元年。今年开始,艺恩网、猫眼电影等一批专业电影大数据网站提供的大数据日渐专业,对电影进行“大数据”分析成为可能。互联网大数据工具的出现彻底改变了影视行业的生态链。之所以说2015年是电影行业的“大数据”元年,有一个标志性的事件,那就是10月份广电总局的实时票房数据平台上线,官方共识性的数据统计终于可以做到每日更新。广电总局的票房数据是在2005年开始通过《中国电影报》对外进行公布的,早期数据统计非常简陋。经过十年的努力,电影大数据终于迈出了重要一步。
自1905年北京丰泰照相馆拍摄了中国人的第一部影片《定军山》以来,中国电影整整走过了111年。电影“1.0时代”诞生了中国第一代和第二代导演,中国的电影先驱们让中国电影在起步阶段就紧跟世界电影发展潮流,拍出了一大批有影响力的作品。
1949年新中国成立后中国的电影进入“2.0时代”,在这期间电影基本上被国营电影厂垄断。电影被政治化,成为意识形态的工具。电影全部是国家投资,从出品方到制片方以及电影院都是国有。
在电影“2.0时代”中国出现了第三代、第四代和第五代的导演。
上个世纪末开始中国电影进入“3.0时代”,好莱坞用《真实的谎言》敲开了中国市场的大门,同时以华谊兄弟为首的内地民营电影公司也开始全面介入电影产业链。中国电影的总票房也从2000年的不足10亿发展到2015年的400多亿。这期间中国电影市场迅速发展,大量资本涌入,中外合作日渐增多,好莱坞大片开始强势冲击中国市场。而与之同时,中国电影工业体系却相对封闭和落后,数据不透明,信息不对等。无论是市场还是政府主管部门都迫切需要一套科学合理的数据统计系统来作为决策依据。
电影“3.0时代”是一个百花齐放的时代,好莱坞大片以及中国第五代和第六代、第七代导演开始各领风骚。代表影片有好莱坞的《泰坦尼克》、《阿凡达》、《速度与激情7》等以及陈凯歌带着《霸王别姬》戛纳封王,冯小刚用《甲方乙方》开启了贺岁档,张艺谋用《英雄》开启了国产片的大片时代。第六代和第七代也是一夜之间成名,宁浩的“疯狂系列”创造票房奇迹,徐峥的《泰囧》让他受到了泰国首相接见,而郭敬明在争议声中默默做出了“小时代”四部曲。
目前中国电影进入全新的大数据“4.0时代”,中国电影市场的蓬勃发展与美国二三十年代的“口红效应”下催生的好莱坞大繁荣不完全一样。20世纪二三十年代的经济危机,那时几乎所有的行业都沉寂趋冷,好莱坞的电影却乘势腾飞。中国的这次电影行业大繁荣既有经济结构调整的大背景,也有2003年以来的中国政府实行的产业改革提振,其中最重要的就是“互联网+”概念催生的大数据的出现。它不但衍生出像电子票务、网络大电影等一大批新兴行业,同时也让中国的电影产业获得了蓬勃发展。
而且中国目前三四五线城市具有广阔的增长空间,“小镇青年”成为改变市场格局的一只重要力量。中国观众的观影主流人群也从一线城市的“都市白领”转向了“小镇青年”,从70后、80后转向了90后。他们的审美以及价值观也被反映到了电影创作上,同时电影的互动性和娱乐性加强,热门“IP”效应显现。电影评分系统的出现让观众在选择观看影片时有了更加直观的参考数据,从而也直接影响到电影票房。
未来中国文化市场的空间不可限量。去年11月,国家提出的“供给侧改革”都与互联网“大数据”的发展有关。对于国内外的电影投资者和从业者来说,因为大数据导致的行业透明,对影视行业的投资也会越来越大。互联网大数据是电影行业的一大步。它体现的是公平性和科学性,它带来的是决策的理性以及资本利用的高效。
想起了《一代宗师》里的一句台词:“一念既出,万山无阻”。今天,我们站在中国电影“4.0时代”的风口,笑看大风起兮云飞扬!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22