京公网安备 11010802034615号
经营许可证编号:京B2-20210330
健康云上如何进行大数据的挖掘与分析(一)
本文旨在介绍区域医疗信息系统建设和大数据分析技术的发展,并总结出健康云上的大数据分析面临的特殊挑战和提出初步解决方案。
一、健康云的兴起
随着我国经济持续稳定的发展和现代科技的日益进步,越来越多的人们开始重点关注自身健康。在满足日常工作和生活的需求之外,规律的健身休闲活动、年度体检、健康饮食已经成为越来越普遍的想象。与此同时,随着国家新医改政策的颁布和实施,与健康直接相关的医疗行业也正在迅猛发展。这里重点介绍一下我国医疗行业IT解决方案市场呈现的发展趋势:
1、 渐增的多样医疗数据源:医疗数据的生成和采集已经不再仅局限于医院这个单一环境。它还可以来自于体检中心、社区/乡镇卫生院、私人诊所、实验室检验中心、急救中心、家庭,随着物联网(IoT, Internet of Things)相关技术的发展,我们甚至可以说:个人医疗数据可以采自于任何适合的地方。
2、 医疗数据的高度集中化:区域医疗信息系统(RHIS, Regional Health Information System)将逐步取代现有的基于医院的信息系统。并且,它将更广泛的覆盖一个特定区域内的所有医院、社区、急救中心、体检中心、实验室检验中心、社会保险机构等。居民个人来自各个数据源的全周期医疗数据将集中保存在统一的区域数据中心中。医疗数据将不再只是某家医院独享的资源,而是与整个区域中的所有医疗机构共享,甚至可以与更上层的大区域级、国家级信息系统进行数据交换。
3、 从医疗信息系统到医疗信息服务:区域医疗信息系统的逐步建立将使先进的医疗信息服务的设计和开发变得更加便捷。例如:流行病分析、公共卫生事件预测、临床决策支持、慢性病管理、个性化的健康照护计划、日常卫生保健管理等。其原因是因为这些信息服务必须建立在数据集中化的基础上。这些服务的受众群体将是整个社会。
正是如上所述的发展趋势使得“健康云(Healthcare Cloud)”的建立才会成为可能。试想一下:在不久的将来,我们可以通过手机统一查询在不同医院的就诊记录、生化检验结果、处方和收费清单;慢性病患者在家中可以自测血压、血糖等指标并通过无线网络上传到区域医疗数据中心,医生也可以远程分析患者自测数据判断其病情发展;大量的知识和规则从海量数据中自动提取出来,并用来协助社区及基层卫生机构的初级医生对患者作出准确的诊断和用药决策;各个社区居民的医疗数据将会自动汇总,并进行统计分析,用以进行流行病、慢性病的自动筛查、趋势分析和爆发预警,为公共卫生机构制定防治干预计划和行动提供有力的依据和参考;患者的症状、生命体征、检验检测结果、医疗影像、诊断、处方、医嘱、手术、住院和账单等全周期数据将会进行全方位的跟踪和分析,为新药开发、新治疗方案的设计提供支持。上述这些事例都将是我们通过健康云可以逐步实现的。
当然,健康云不是一天就可以建成的,这将是个阶段性的工程。除了国家政策和地方支持等外围因素之外,云计算和大数据技术将会起决定性作用。从构建底层云基础架构、云存储方案,到中层的云计算平台,最后到上层的云应用服务设计和开发,至少需要3~5年的长期规划。其中,大数据分析部分更是纵向贯穿于云基础架构、云平台和云服务三层,需要整体设计和逐步实施。基于现有技术和需求,在本文中,我们暂且把健康云简化定义为:基于区域医疗信息系统的医疗信息服务,并重点关注1~3年的市场需求。
二、大数据分析技术的发展
区域医疗信息系统中的医疗数据是典型的大数据。我们知道所谓的“大数据”并不只是数量上的“大”。在此,我们简单套用一下大数据的4V(Volume,Velocity,Variety,Value)定义:
1、 Volume:区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域,并且数据量持续增长。按照医疗行业的相关规定,一个患者的数据通常需要保留50年以上。我们可以想象这是多么巨大的数据量。
2、 Velocity:医疗信息服务中可能包含大量在线或实时数据分析处理的需求。例如:临床决策支持中的诊断和用药建议、流行病分析报表生成、健康指标预警等。
3、 Variety:医疗数据通常会包含各种结构化数据表、非(半)结构化文本文档(XML和叙述文本)、医疗影像等多种多样的数据存储形式。
4、 Value:医疗数据的价值不必多说,它不仅与我们个人生活息息相关,更可用于国家乃至全球的疾病防控、新药研发和顽疾攻克。
近年来,在卫生部的领导下和国家财政支出的支持下,绝大多数的三甲医院和部分二级医院已经先后建立了先进的数字化信息系统和电子健康档案系统。但至今为止,大部分系统和数据仍然只限于内部使用。据了解,2010年底,卫生部完成了“十二五”卫生信息化建设工程规划编制工作,初步确定了我国卫生信息化建设路线图,简称“3521工程”,即建设国家级、省级和地市级三级卫生信息平台,加强公共卫生、医疗服务、新农合、基本药物制度、综合管理5项业务应用,建设健康档案和电子病历2个基础数据库和1个专用网络建设。由此可看出,今后的几年,随着云计算技术的成熟和实用化,大规模区域医疗信息系统和大型数据中心的建立将逐步展开。然而,随着海量医疗数据被保存下来,一个棘手的问题出现了:我们如何通过高效的分析这些数据来提供有价值的服务?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26