
健康云上如何进行大数据的挖掘与分析(一)
本文旨在介绍区域医疗信息系统建设和大数据分析技术的发展,并总结出健康云上的大数据分析面临的特殊挑战和提出初步解决方案。
一、健康云的兴起
随着我国经济持续稳定的发展和现代科技的日益进步,越来越多的人们开始重点关注自身健康。在满足日常工作和生活的需求之外,规律的健身休闲活动、年度体检、健康饮食已经成为越来越普遍的想象。与此同时,随着国家新医改政策的颁布和实施,与健康直接相关的医疗行业也正在迅猛发展。这里重点介绍一下我国医疗行业IT解决方案市场呈现的发展趋势:
1、 渐增的多样医疗数据源:医疗数据的生成和采集已经不再仅局限于医院这个单一环境。它还可以来自于体检中心、社区/乡镇卫生院、私人诊所、实验室检验中心、急救中心、家庭,随着物联网(IoT, Internet of Things)相关技术的发展,我们甚至可以说:个人医疗数据可以采自于任何适合的地方。
2、 医疗数据的高度集中化:区域医疗信息系统(RHIS, Regional Health Information System)将逐步取代现有的基于医院的信息系统。并且,它将更广泛的覆盖一个特定区域内的所有医院、社区、急救中心、体检中心、实验室检验中心、社会保险机构等。居民个人来自各个数据源的全周期医疗数据将集中保存在统一的区域数据中心中。医疗数据将不再只是某家医院独享的资源,而是与整个区域中的所有医疗机构共享,甚至可以与更上层的大区域级、国家级信息系统进行数据交换。
3、 从医疗信息系统到医疗信息服务:区域医疗信息系统的逐步建立将使先进的医疗信息服务的设计和开发变得更加便捷。例如:流行病分析、公共卫生事件预测、临床决策支持、慢性病管理、个性化的健康照护计划、日常卫生保健管理等。其原因是因为这些信息服务必须建立在数据集中化的基础上。这些服务的受众群体将是整个社会。
正是如上所述的发展趋势使得“健康云(Healthcare Cloud)”的建立才会成为可能。试想一下:在不久的将来,我们可以通过手机统一查询在不同医院的就诊记录、生化检验结果、处方和收费清单;慢性病患者在家中可以自测血压、血糖等指标并通过无线网络上传到区域医疗数据中心,医生也可以远程分析患者自测数据判断其病情发展;大量的知识和规则从海量数据中自动提取出来,并用来协助社区及基层卫生机构的初级医生对患者作出准确的诊断和用药决策;各个社区居民的医疗数据将会自动汇总,并进行统计分析,用以进行流行病、慢性病的自动筛查、趋势分析和爆发预警,为公共卫生机构制定防治干预计划和行动提供有力的依据和参考;患者的症状、生命体征、检验检测结果、医疗影像、诊断、处方、医嘱、手术、住院和账单等全周期数据将会进行全方位的跟踪和分析,为新药开发、新治疗方案的设计提供支持。上述这些事例都将是我们通过健康云可以逐步实现的。
当然,健康云不是一天就可以建成的,这将是个阶段性的工程。除了国家政策和地方支持等外围因素之外,云计算和大数据技术将会起决定性作用。从构建底层云基础架构、云存储方案,到中层的云计算平台,最后到上层的云应用服务设计和开发,至少需要3~5年的长期规划。其中,大数据分析部分更是纵向贯穿于云基础架构、云平台和云服务三层,需要整体设计和逐步实施。基于现有技术和需求,在本文中,我们暂且把健康云简化定义为:基于区域医疗信息系统的医疗信息服务,并重点关注1~3年的市场需求。
二、大数据分析技术的发展
区域医疗信息系统中的医疗数据是典型的大数据。我们知道所谓的“大数据”并不只是数量上的“大”。在此,我们简单套用一下大数据的4V(Volume,Velocity,Variety,Value)定义:
1、 Volume:区域医疗数据通常是来自于拥有上百万人口和上百家医疗机构的区域,并且数据量持续增长。按照医疗行业的相关规定,一个患者的数据通常需要保留50年以上。我们可以想象这是多么巨大的数据量。
2、 Velocity:医疗信息服务中可能包含大量在线或实时数据分析处理的需求。例如:临床决策支持中的诊断和用药建议、流行病分析报表生成、健康指标预警等。
3、 Variety:医疗数据通常会包含各种结构化数据表、非(半)结构化文本文档(XML和叙述文本)、医疗影像等多种多样的数据存储形式。
4、 Value:医疗数据的价值不必多说,它不仅与我们个人生活息息相关,更可用于国家乃至全球的疾病防控、新药研发和顽疾攻克。
近年来,在卫生部的领导下和国家财政支出的支持下,绝大多数的三甲医院和部分二级医院已经先后建立了先进的数字化信息系统和电子健康档案系统。但至今为止,大部分系统和数据仍然只限于内部使用。据了解,2010年底,卫生部完成了“十二五”卫生信息化建设工程规划编制工作,初步确定了我国卫生信息化建设路线图,简称“3521工程”,即建设国家级、省级和地市级三级卫生信息平台,加强公共卫生、医疗服务、新农合、基本药物制度、综合管理5项业务应用,建设健康档案和电子病历2个基础数据库和1个专用网络建设。由此可看出,今后的几年,随着云计算技术的成熟和实用化,大规模区域医疗信息系统和大型数据中心的建立将逐步展开。然而,随着海量医疗数据被保存下来,一个棘手的问题出现了:我们如何通过高效的分析这些数据来提供有价值的服务?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08