京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,教你怎么用大数据里赚钱!
在大数据时代想赚钱必须会运用大数据,掌握了大数据技术就可以赚到大钱。
当数字营销技术已经普遍得到认同,并且在过去一些年当中日渐成熟,收集和利用数据的迫切希望也开始加快了步伐。
在交际圈和客户体验领域,“数据”已经成为一切跟数字有关的事物的相联系的统称。包括联系方式、交易记录、行为信息,甚至是录像、影像之类的内容。这种现象已经不可避免地导致了对数字价值的滥用和投机。
我们认为数据的价值不在于它的搜集和储存,而应该源于数据分析的过程、基于数据创造深刻的见解,和在这些见解基础上的采取行动。这种价值在当品牌通过改进的商品和服务可以为数据的创造者——顾客提供更好的体验时才会显现。
一般来说,有三个模型可以帮助营销者学会更好地利用数据,更好地优化营销预算,以及驱动市场导向创新。
1.利用模型识别算法改善市场细分
2.通过倾向分析做出精确的预测
3.对顾客信息进行过滤以提出更好的推荐建议
细分模型当算法是用来分析顾客数据集的时候,受众市场细分就变得更加复杂精细。人类只能处理不多的一些的跟消费者细分相关的变量,而计算机软件就不受这个限制。这对于要计算特定顾客群的真正价值来说非常重要。此外,营销者可以很快速地摆脱传统的市场细分模型,这种传统模型通常建立在小范围的基础人口数据点上。它们包括产品细分(人们买或者不买的产品种类、群体)、品牌细分(人们喜欢或不喜欢品牌种类、群体)、行为细分(人们购买频率、在购买点停留时间、与客服接触频率以及降价打折对他们的影响)。
倾向模型
倾向模型可以让你预测单个顾客或细分顾客群在未来的行为表现。假设你掌握了正确的数据,你就有可能用相应算法将某一个消费者与其他消费者进行比较,从而预测出这个消费者将会花费他们生命当中多少的时间来与你的产品共同度过。举个例子,一个很高数额的一次性购买所带来的价值就不如一个数额低但是持续性地购买带来的价值高。在这种情况下,专注于研究后者市场就显得意义非凡。预测客户的参与倾向也是可以的,只要弄清楚某一个特定客户点击你的内容营销或的可能性有多少,或者邮件沟通能够产生多大的效率提高作用。另一个有价值的倾向模型就是可以测量购买的倾向。它会告诉你消费者是不是准备要开始购买行动,它可以帮助你用合适的报价触达目标消费者。这种模型也可以使那些不准备购买的客户呼之欲出,以便于品牌可以用更有竞争力的报价去触及他们。
推荐模型
亚马逊有一个自动推荐的程序,最为著名的就是“买了这个产品的人也购买了......”。运用推荐算法,商家不再局限于向上销售,而是能够提供数据服务以便真正帮助消费者找到他们想要的产品和服务。交叉销售推荐对消费者来说是一个非常有用的功能。不仅仅是推荐同一种产品的其他版本,而是建议消费者购买其他类型的产品,从而达到捆绑销售的目的。这一功能在服装上作用得很好,但同时在其他产业如娱乐产品也可以发挥作用。比如提前购买电影票附带点心,享受快递服务,就是一个很好的例子。“下一步销售”推荐使用的数据支持更加广泛,它是用来向消费者建议她想购买的下一件物品,这个在价值附加服务领域表现尤其突出。比如,如果一家自行车厂商知道某一顾客刚刚更新了他的自行车,他就可以提供一套工具或者配件帮助消费者从购买中得到更多价值。运用以上三种模型,企业可以通过数据挖掘所收集的数据资料的真正价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15