
随着科技在不断在发展,我们已经慢慢走近人工智能时代。微软认为人工智能时代有人工智能、聚合智能、自适应智能和隐形智能这几个属性。 研究人工智能会对我们人类社会产生什么样的影响?这是现在非常热门的话题,为什么人工智能会受到如此多的关注呢?这是因为人工智能这几年有很多高含金量的进展,微软在这些年对人工智能的研究主要是如下三个方面。
首先是聚合智能——微软小冰,聚合人们在网上聊天集合成人工智能的产品。微软小冰从刚最开始不到100万的使用人数到现在的4000万人,其中大数据是发展与成功的关键。对于微软小冰而言,微软深刻理解目标是需要与用户产生情绪上的交流,因此微软将大心思花在“如何让用户继续与小冰谈话”这个课题上。
“有的时候不聊是为什么?是我们回答的不好吗?”这就需要从云服务的概念中着手解决,将服务固定在人工智能上以及与云服务连接在一起,不断进行信息的回馈,从而不断改进微软小冰乃至整个大数据的精确度。
微软亚洲研究院副院长——张益肇博士
既然提到了云服务,那就不得不提自适应智能这个概念——微软牛津计划,人工智能要根据不同的场景、不同的数据提供更好、更精准的服务。微软牛津计划的意义在于任何一个开发者都可以很容易将人工智能应用到具体的项目中,并且可以不断的更新人工智能、更新计算能力和识别能力。
微软牛津计划云服务提供了计算机视觉API、人脸API、语音API、视频检测API以及语音理解智能服务等多项基础服务及API应用接口。举例计算机视觉API其中一项功能——图象分析,这是视觉API的一部分,可以上传一张照片且分析出人的形态甚至是人脸的位置,比如识别成一个人在游泳,脸的位置在哪里,还可以分辨出TA的年龄和性别。
在去年该服务能够有100多种的种类识别,如今已经可以分辨出1000多种形态,这些都是基于云服务来实现的,并且在不断的变化中。微软对计算机视觉识别技术十分注重,在图像识别方面,人类错误率是5.1%,今年微软亚洲研究院的研究员在ImageNet计算机视觉识别挑战赛上利用技术上的最新突破实现了3.57%,于此我们可以得出一个结论:人工智能的识别能力已经强于人类。
微软亚洲研究院副院长——张益肇博士
视觉识别与分析是怎样处理与输出的,那就要说第三个人工智能属性——隐形智能,通过硬件感应器提供不同的数据,并且运用这些数据进行分析和理解。微软智能手环就是一个很好的例子,上面有许多硬件感应器,通过各种各样的信息大数据手段进行分析,了解用户是生活习惯,从而提供改善健康和生活效率的一些方式。
除了智能手环,未来发展到智能家居也会有各式各样不同的感应器,比如厨房里要做什么样的菜?多个不同摄像头可以捕捉这些信息,来为用户进行分析以及提供帮助。未来人工智能依赖于数据驱动的学习、业务学习,对大数据进行分析和理解,以满足客户和市场的需求。
概念:人工智能发展迅速、前景良好,那么人类可以运用人工智能打造出超人吗?
人工智能已经是非常热门题目,相信有人会问人工智能会不会超过人和取代人,实际上在某些情况下计算机已经远远超过人了,当然人还有很多智慧是计算机没有的。微软相信未来所有的AI将会是增强智能,是“人类+机器=超人”这样一个组合,比如微软在2012年演示的一个项目:通过语音识别+机器翻译的组合方式进行对话,人和机器可以把彼此的长处叠加,机器并不能代表你说话,但机器可以帮你翻译,帮你把没有办法沟通的人一起交流起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08