京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用大数据戳穿“空城计”
大数据在现代治理中能否做大?怎么做大?取决于它的占有者和使用者,数据分析师怎么采集、挖掘、整理、分析。
某地在海边兴建了一批小高层住宅,美其名曰海景房。因为地理位置、气候条件并无优势,宣传单天南海北撒了一大片,房子还是卖不动。有人提醒他,外地购房团过来了,看到小区黑黢黢一片,入住率不高,哪里还有购房冲动?开发商灵机一动,雇请一批民工,每天晚上到空关的住宅里值班,负责晚上六七点钟陆陆续续开灯,九十点钟再陆陆续续关灯,以营造一种万家灯火的景象。
这是“空城计”的民间版,主要为了应对 “黑灯瞎火”的尴尬。在某些地方官员那里,唱起新版“空城计”,闹腾的动作可就是满城风雨了,因为有权力、资本、政绩等诸多因素助推。有朋友吐槽说过去是“孟母三迁”,现在是“县中三迁”。他们的县中,本来在城区中心,前些年迁到稍远的城北,现在又迁到十公里外的城东。可怜住在城区的家长,只好追着买房、换房、租房。县中搬迁公开理由是扩大招生规模,提高办学水平,事实上不过是借助学校建设,带动新区发展,拉动楼盘销售,填充“空城”。“县中三迁”以及政府办公大楼“三迁”,已成为相当一部分经济后发地区发展经济的共有套路。
直到今天,什么才算“空城”“鬼城”?哪些是“空城”“鬼城”?口径不一,说法不一。好多调查统计方式还停留于查水表、电表,甚至晚上数黑灯房间的调查方式。岁末年初,中国50大“鬼城”排行榜再度出炉,县级城市成主流。我倒不特别关心哪些城市榜上有名,我留意的是数据来源。研究人员统计每100平方米居民区使用搜索引擎的人数,认为这样大的区域里如果百度用户不到0.25人,可以被视为“高空置率”,也就是“鬼城”。用来发现鬼城的数据是巨大的,包含从2014年9月到2015年4月的7.7亿百度用户。
当然,这个数据也有问题,因为百度用户不成比例地集中于年轻人和富裕人群。但是,这毕竟是一个最大程度避免人工干预、人为污染的调查统计方法。
城市管理的另一个有趣的改变,发生在城市街头,起因也是大数据。
跑出租的司机,一般都喜欢挑长单子做,人之常情嘛。过去,出租车公司的管理手段通常是不接短单子就罚钱,不接电调就罚款。这样的处罚,也只限于投诉一起、发现一起,才能查处一起。现在,滴滴的“滴米”调度系统已经上线,该系统是通过对大数据的分析和把握,推出一种新的调度方式。行驶里程多、道路状况好的优质单会扣除滴米,而行驶里程较少、道路状况拥堵的“劣质单”则会奖励滴米。当乘客端发出叫车需求,有两辆车与乘客的距离是一样的,那么谁的滴米多,谁就获得这个订单,以此鼓励司机为接到好单而多累积滴米。
大数据会“说话”,能揭示非相关数据的相关关系,继而推断出因果关系。显然,这是一个拟人的说法,数据不会自动或主动“说话”,那么,谁给它“说话”的空间?又有谁去“听话”?大数据在现代治理中能否做大?怎么做大?取决于它的占有者和使用者。数据分析师是怎么采集、挖掘、整理、分析,这是一个问题;如何应用大数据,驱动管理升级,优化决策机制,创新制度设计,是问题的关键。最重要的恐怕是,管理者的视野要大。唯其如此,才有大智慧、大格局、大战略。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01