京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据初创企业面临的五大挑战
近几年,数据逐渐成为驱动业务的主要推动力。 更重要的是,大数据是可以帮助企业改善策略,提高运营效率和加速增长。
75% 的龙头企业说,他们已经或计划在未来几年在大数据基础设施方面布局。大量的新的和令人兴奋的大数据初创公司出现来满足企业客户日益增长的需求。
虽然大数据吸引力巨大,但是考虑到66% 的创业公司一般会在12个月失败,大数据初创公司们仍然面临着很多挑战。
挑战一 缺乏人才
大数据市场在不断增长,60%的领导者认为他们今年在大数据运营上会花费更多,只有5%预测预算会减少,最大的问题在于,这种增长将超过其实现它所需的人才和规模应用。
据麦肯锡的报告称,美国的大数据人才需求在2018年将达到 170万,大约在同一时间,美国数据市场价值将达到 415亿美元。随着行业的发展,人才技能差距将拉大。没有简单的解决方案,是唯一真正的修复是随着时间的推移,人才自然会增加以满足市场需求。
(这里还有一点讽刺,因为许多大数据初创企业试图通过自己的软件来解决市场上人才缺乏的问题,但他们同样面临招不到人。)
挑战二 人才成本高
71% 企业和IT组织认为自己在利用数据方面刚达到平均水平或滞后。显然需要提高整体人才能力和教育现有的劳动力。目前在员工的培训上,为了跟上新开发产品需要大量成本。
这样的培训运营费用在2013年全球达到1300亿,考虑到数据业务的快节奏的性质和随后的需要更多的人员和持续培训,这些成本只会持续上升。
挑战三 解决理想与现实的冲突
在最近《华尔街日报》上 一篇有关Hadoop 的文章上黛博拉·盖奇说,:一些评论把大数据捧地过于高了,对大数据的”炒作”使许多组织盲目的为采用而采用:他们急切地拥抱工具,但往往不关注他们的需求,只是因为这些工具似乎是最受欢迎的(Hadoop是一个例子)。
进一步复杂化的是,大数据平台本质上是厚数据。这使得供应商很难去表达它的功能和优点,甚至更难让客户们去理解。这就是为什么, 据Gartner 说,到2017年,60%的大数据项目将无法超越试点和实验,并将被放弃。 让大数据项目更加落地是未来的重点。
挑战四 融资障碍
大数据在风投界获得了极大的关注和惊人的资金, Hortonworks和 Dataminr的 融资近1亿美元就是很好的证明。 但在许多方面,争夺现金变得不利于新公司。
由于行业的发展,风投们会更亲睐具有挑战性的企业家,很多公司喜欢Palantir,MongoDB和Mu Sigma (至少有2亿美元投资)。 因为资金增加了,在某种程度上我们可以预期投资者变得更加初步承诺投资,而不是投资于更成熟的新锐品牌。
挑战五 更残酷的竞争
全球大数据预计在2015年产值达到 1250亿美元 ,创业并不孤单; 他们面临SAP微软和IBM这样的数十亿美元的大公司的残酷竞争。
这些巨人可以释放功能更新产品,收购同类公司。他们的资金是无限的,而初创企业必须更加精细化他们的产品只是为了维持他们的现金消耗速率。
实际上,这是一件好事。初创公司成功的最佳方式和关注一个点和把它做好,大公司总是在寻找方法来获得竞争优势。 如果你在存储、分析等方面有极大的优势,被收购也是个不错的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20