京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据初创企业面临的五大挑战
近几年,数据逐渐成为驱动业务的主要推动力。 更重要的是,大数据是可以帮助企业改善策略,提高运营效率和加速增长。
75% 的龙头企业说,他们已经或计划在未来几年在大数据基础设施方面布局。大量的新的和令人兴奋的大数据初创公司出现来满足企业客户日益增长的需求。
虽然大数据吸引力巨大,但是考虑到66% 的创业公司一般会在12个月失败,大数据初创公司们仍然面临着很多挑战。
挑战一 缺乏人才
大数据市场在不断增长,60%的领导者认为他们今年在大数据运营上会花费更多,只有5%预测预算会减少,最大的问题在于,这种增长将超过其实现它所需的人才和规模应用。
据麦肯锡的报告称,美国的大数据人才需求在2018年将达到 170万,大约在同一时间,美国数据市场价值将达到 415亿美元。随着行业的发展,人才技能差距将拉大。没有简单的解决方案,是唯一真正的修复是随着时间的推移,人才自然会增加以满足市场需求。
(这里还有一点讽刺,因为许多大数据初创企业试图通过自己的软件来解决市场上人才缺乏的问题,但他们同样面临招不到人。)
挑战二 人才成本高
71% 企业和IT组织认为自己在利用数据方面刚达到平均水平或滞后。显然需要提高整体人才能力和教育现有的劳动力。目前在员工的培训上,为了跟上新开发产品需要大量成本。
这样的培训运营费用在2013年全球达到1300亿,考虑到数据业务的快节奏的性质和随后的需要更多的人员和持续培训,这些成本只会持续上升。
挑战三 解决理想与现实的冲突
在最近《华尔街日报》上 一篇有关Hadoop 的文章上黛博拉·盖奇说,:一些评论把大数据捧地过于高了,对大数据的”炒作”使许多组织盲目的为采用而采用:他们急切地拥抱工具,但往往不关注他们的需求,只是因为这些工具似乎是最受欢迎的(Hadoop是一个例子)。
进一步复杂化的是,大数据平台本质上是厚数据。这使得供应商很难去表达它的功能和优点,甚至更难让客户们去理解。这就是为什么, 据Gartner 说,到2017年,60%的大数据项目将无法超越试点和实验,并将被放弃。 让大数据项目更加落地是未来的重点。
挑战四 融资障碍
大数据在风投界获得了极大的关注和惊人的资金, Hortonworks和 Dataminr的 融资近1亿美元就是很好的证明。 但在许多方面,争夺现金变得不利于新公司。
由于行业的发展,风投们会更亲睐具有挑战性的企业家,很多公司喜欢Palantir,MongoDB和Mu Sigma (至少有2亿美元投资)。 因为资金增加了,在某种程度上我们可以预期投资者变得更加初步承诺投资,而不是投资于更成熟的新锐品牌。
挑战五 更残酷的竞争
全球大数据预计在2015年产值达到 1250亿美元 ,创业并不孤单; 他们面临SAP微软和IBM这样的数十亿美元的大公司的残酷竞争。
这些巨人可以释放功能更新产品,收购同类公司。他们的资金是无限的,而初创企业必须更加精细化他们的产品只是为了维持他们的现金消耗速率。
实际上,这是一件好事。初创公司成功的最佳方式和关注一个点和把它做好,大公司总是在寻找方法来获得竞争优势。 如果你在存储、分析等方面有极大的优势,被收购也是个不错的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22