京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据实现价值: 网站细分分析的十个要点
随着数据量的大量产生及很容易获取,许多网站分析人员通过与专家、社会媒体、同等进行交流讨论分析什么样的数据才能产生有意义/价值的信息。
作为艺术与技术结合的网站分析师,不能仅依靠关键指标或者依赖于一个很炫的仪表盘。而真正的价值体现在于不断的细分网站用户,从而更好的分析用户,为他们提供个性化的服务进而实现其商业价值。
本文提供了10点细分的建议,让你的数据直接变成有价值的信息。
1、一滤、二组、三细分
虽然网站(流量)分析的数据量是海量(译者注:UV超过10万UV/天的网站网站日志、订单数据、商品数据、会员数据等每天产生的数据一般都是以G为单位原始数据。),但往往也会很容易导致一些错误的结论(译者注:大数据量意味数据内容多,但如果对于数据的收集过程或者数据本身是否有偏/不足不了解,就很容易在分析的时候做出的决定是错的)。由于JS代码的执行是在客户端(浏览器加载网页的过程中),所以有很多固有的错误是无法避免的,除非你对这些数据进行过滤处理。另外,如果不对数据进行细分,那么往往top10与TOP50列表内容各个时间段都并不太会有太大改变(译者注:对于一个流量相对稳定的公司来说,排名前面几位的一般变化不大。所以分析时候,最好看每个大类下面的TOP50,更容易发现一些数据的异常)。
2、细分客户类型
常规的用户类型:新访者、潜在用户(多次访问过访问,但没有注册)、会员、联盟客户、公司员工。不同类型的用户访问网站的行业差异性很大。会员的行为与潜在用户可能完全不一样(译者注:因为不同类型的用户来网站的目的是不一样的,会员来购买可能注是为了购买某种商品,而潜在用户可能只是来看看或者进行比比价)。会员有时候会让转化率这个指标出现虚高,往往公司内部员工的转化率会比较高。
3、对渠道类型进行划时代
渠道类型主要分为:付费与自然流量;付费媒体与免费媒体,内部与外部广告,以及联盟。很多网站分析工具提供的基本的流量细分报告,但如果没有另外再加入跟踪代码,可能很难超越的三种基本类型。
一些关键流量渠道细分必须考虑加入一些代码包括:如果一些社会化渠道来源(一些人分析你网站的内容的转贴或者发贴),自有社会化媒体的渠道(像在youtube或者facebook上官方主页之类;付费或者自然搜索;自然的引用链接(像别的网站转载你的内容然后会加上原文链接),一般网站链接的交换。否则这些渠道的流量跟踪可能会无法统计。
4、仔细检查自然流量加的代码
许多网站的自然流量往往是不可信因为加入的代码往往质量很差。请仔细检验你的邮箱、社会媒体、重定位或者手机流量的监测代码是否准备且完全正确的,这样才能对更准备去判断是否统计的自然输入是真的直接输入。
5、通过意向对内容进行细分
网站的用户可以分为:研究、购买、重复购买、谈判、推荐。不对的人对于内容的印象是不一样的,所以利用这些相同的内容定位命名为你的网站分析报告。随着时间的推移,通过构建一个好的购买流程漏斗:包括:研究、游客,购买,交易和/或更新,从而不断的够优化用户体验。
6、利用有意义的的方法划分产品类型
就像你通过内容来细分目的,为了更好追求从而更好的分析/识别业务上产品的配置便于作的扩展分析。
7、跨平台的整合数据
网站分析数据不应该被交易数据所替代,整合不同的数据源用于理解的分析或者记录的信息的区别。从记录的信息中得出结果,二者并不相等,信息并表示结论。
8、更贴近你的客户
许多在报告中呈现的专业术语与科学术语似乎与商业股东的利益没有明显的相关。转变报告的内容表达从而更好走向你的“听众”,让他们更好的理解报告。
9、为每一个推测建议目标并检验这些预测
一个好的网站分析师通过假设、以及从数据中发现的规则来对未来的趋势做出预测,基于对于整个市场的趋势做出研判。一个伟大的网站分析师可以给猜测一个合适的解释,从而可以为下一步月度、季度、年度去评估这些预测的目标。
10、把商业驱动与细分&指标联系在一起
您的业务主要集中在积极的收购重点产品?开始分割你的数据,包括关键的发现,围绕该焦点。
你报告的听众是否持续深入的进一步你的用户服务行为,而不是仅仅把焦点集中的新用户服务、潜在客户的细分上。与业务相一致,以及注意各类细节,从而让你的分析你的听众愿意接受分析,并保持开放
总结
虽然很少人可以完全掌握并使用这些要点,然后对于是作为艺术与技术结合的网站分析师来说,我们应该都要知道每一项细分都影响商业价值的实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22