
大数据不是万能水晶球 这些事不要指望它
现在,大数据预测已经被应用到了各种领域,比如预测奥斯卡奖得主;预测世界杯赛事结果;预测高考作文题目等等,可见大数据预测已经成为了一种势不可挡的趋势。
维基(wikibon)预计大数据市场从2011年到2026年将获得17%年复合增长率,将在2026年达到840亿美元的高峰。大数据市场从2013年的196亿美元增至2014年的273.6亿美元。
大数据是怎么预测的?
预测性分析是大数据最核心的功能。那么,大数据是如何实现未卜先知的能力呢?首先,必须有“现在”足够海量的用户行为数据,数据量越大,就越有参考价值,准确度更高。
其次,对用户“过去”纷繁的行为数据进行分类和总结,形成经验和智慧,为大数据的分析和处理提供可靠的逻辑。最后,通过智能的大数据分析,得出预判,这才是大数据最具备价值的产出。
大数据不能做什么?
人们对大数据给予了很多希望,希望做出更优秀的产品;希望卖出更多商品等等,然而大数据并不是巫婆的水晶球,什么都可以预测,大数据也有短板。
美国统计学家内特·希尔擅长利用大数据进行预测。在上一次美国总统大选期间,他非常准确的预测了美国50个州的投票胜负。但他认为,大数据也不是万能的,有些领域的预测成功率就很低,比如地震,比如股市。
此外,人们的社会行为具有不可预测性。人是可以自由决定自己的行为的,我们可以预测某人,明天会吃饭,但没人可以预测,这个人明天几分几秒会去吃饭,因此人的行为,如果放到越大的空间和时间范围,则是越可以精确预测的;如果放到越小的空间和时间范围,则是越不可以精确预测的。
还记得前文说的,大数据预测时要对过去的行为数据进行分类和总结,所以,对于创新业务大数据是没法预测的,也没法根据数据分析确定新出现的业务关联性是临时的,还是可持续的。
虽然大数据在很多领域为人们打来了很大收获,但大数据不是万能的水晶球,它是信息时代的一个伟大的工具,它有它擅长的领域,也有不擅长的领域。数据是行为的结果,它可以根据规律分析预测某一群体的某一趋势,预测到一些共性的东西,但是无法预测个性的东西,比如我们即使掌握一个人从出生开始的全部行为信息,也无法预测明天早餐他会吃什么。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02