
大数据产生大结果:保险赔付率预测模型效能提升高达30%
1月8日,2016中国(杭州)“互联网+”金融大会,来自律商联讯风险信息公司(LexisNexis Risk Solutions)的保险业务首席执行官 Bill Madison进行了“大数据在保险行业的应用和探索”的精彩演讲。Bill指出,若想在当今的大数据时代充分挖掘数据价值,我们必须首先明确自身的战略诉求,再借助海量数据资源、大数据技术、关联和分析能力、以及行业专长满足个性化的诉求。
公共记录引入保险市场 赔付率预测模型效能提升高达30%
近年来,核心的银行征信数据已经发生了变化,除了消费者行为的改变和数据明细程度的提升,还产生了一些全新的数据字段,为消费者风险评估带来了许多有价值的新洞见。面对不断演变的数据来源,律商联讯长期致力于扩展消费者风险分析维度,从全球超过1万3千多个数据源采集了500亿条消费者和企业记录,为保险和金融服务等行业积累了海量的数据资源,其中包括:历来的居住地址和住址稳定性,电话和水电煤气记录,职业证书,教育历史,破产、抵押、判决和驱逐等数据。
除了丰富的公共记录和第三方数据资源以外,律商联讯通过建立保险行业共享型数据平台,为行业引入了一个全新的数据成分,完善了为以保险为中心的消费者金融视图。
律商联讯将这些非传统数据引入保险市场,生成独特的变量和行业风险评分,与传统征信数据一起用于风险定价和承保决策,帮助保险行业利用数据优化工作流程,更好地评估风险,从而提升从展业到理赔、覆盖客户完整保险生命周期的各个环节的工作效率。
如下图所示,掌握的数据越多,保险赔付风险模型的预测能力就越强。每增加一个数据集,我们都能看到模型的预测准确度获得显著提升——改良后的信用记录,加上公共记录,再加上保险赔付历史,可以在传统信用记录的基础之上带来30%的模型效能提升。
如何使大数据应用切实可行
律商联讯的大数据战略远远超过了数据或数据技术本身,40年的行业积累使得律商联讯能够在吃透行业的基础上进行数据关联和分析,并利用行业专长提供以客户为中心的解决方案。
律商联讯总结多个国际市场运营经验后发现:保险公司拥有一套自己的工作流程,从初期的保险展业开始,直至为客户提供理赔服务。在这个保险生命周期中,保险公司每次与消费者接触的节点,都是一次获取知识的节点,有机会更进一步地了解消费者。律商联讯希望在每一个工作节点,都可以为保险公司提供与消费者个人相关的信息和洞见,帮助保险公司更好地理解风险。为了实现这一目标,律商联讯在美国及多个海外市场建立了与保险公司之间的单一数据管道,将数据和分析产品在每一个相关工作节点推送给保险公司,充分满足其各个节点的风险信息需求。
Bill最后总结到,数据问题其实很简单:数据越大越好。更多的数据和更好的关联能够为我们带来更加丰富的个体档案,以及更加完整、准确的个体间关系。借助足够多的数据,我们就能够掌握每一个客户的切实可行的个性化洞见,为每一个客户定制完全贴合其需求的产品和服务。只有这样,大数据才能真正凸显其价值所在。
律商联讯风险信息公司(简称:律商联讯)是一家全球领先的风险信息服务提供商,向保险、医疗健康、法律、金融服务等行业及政府机构提供风险预测、评估及管理服务。律商联讯是励讯集团(RELX Group,原名励德爱思唯尔集团Reed Elsevier)的全资子公司。励讯集团是世界最大的专业信息解决方案提供商之一,在科技、医学、风险、法律和商业信息等领域为120多个国家的客户服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01