京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产生大结果:保险赔付率预测模型效能提升高达30%
1月8日,2016中国(杭州)“互联网+”金融大会,来自律商联讯风险信息公司(LexisNexis Risk Solutions)的保险业务首席执行官 Bill Madison进行了“大数据在保险行业的应用和探索”的精彩演讲。Bill指出,若想在当今的大数据时代充分挖掘数据价值,我们必须首先明确自身的战略诉求,再借助海量数据资源、大数据技术、关联和分析能力、以及行业专长满足个性化的诉求。
公共记录引入保险市场 赔付率预测模型效能提升高达30%
近年来,核心的银行征信数据已经发生了变化,除了消费者行为的改变和数据明细程度的提升,还产生了一些全新的数据字段,为消费者风险评估带来了许多有价值的新洞见。面对不断演变的数据来源,律商联讯长期致力于扩展消费者风险分析维度,从全球超过1万3千多个数据源采集了500亿条消费者和企业记录,为保险和金融服务等行业积累了海量的数据资源,其中包括:历来的居住地址和住址稳定性,电话和水电煤气记录,职业证书,教育历史,破产、抵押、判决和驱逐等数据。
除了丰富的公共记录和第三方数据资源以外,律商联讯通过建立保险行业共享型数据平台,为行业引入了一个全新的数据成分,完善了为以保险为中心的消费者金融视图。
律商联讯将这些非传统数据引入保险市场,生成独特的变量和行业风险评分,与传统征信数据一起用于风险定价和承保决策,帮助保险行业利用数据优化工作流程,更好地评估风险,从而提升从展业到理赔、覆盖客户完整保险生命周期的各个环节的工作效率。
如下图所示,掌握的数据越多,保险赔付风险模型的预测能力就越强。每增加一个数据集,我们都能看到模型的预测准确度获得显著提升——改良后的信用记录,加上公共记录,再加上保险赔付历史,可以在传统信用记录的基础之上带来30%的模型效能提升。
如何使大数据应用切实可行
律商联讯的大数据战略远远超过了数据或数据技术本身,40年的行业积累使得律商联讯能够在吃透行业的基础上进行数据关联和分析,并利用行业专长提供以客户为中心的解决方案。
律商联讯总结多个国际市场运营经验后发现:保险公司拥有一套自己的工作流程,从初期的保险展业开始,直至为客户提供理赔服务。在这个保险生命周期中,保险公司每次与消费者接触的节点,都是一次获取知识的节点,有机会更进一步地了解消费者。律商联讯希望在每一个工作节点,都可以为保险公司提供与消费者个人相关的信息和洞见,帮助保险公司更好地理解风险。为了实现这一目标,律商联讯在美国及多个海外市场建立了与保险公司之间的单一数据管道,将数据和分析产品在每一个相关工作节点推送给保险公司,充分满足其各个节点的风险信息需求。
Bill最后总结到,数据问题其实很简单:数据越大越好。更多的数据和更好的关联能够为我们带来更加丰富的个体档案,以及更加完整、准确的个体间关系。借助足够多的数据,我们就能够掌握每一个客户的切实可行的个性化洞见,为每一个客户定制完全贴合其需求的产品和服务。只有这样,大数据才能真正凸显其价值所在。
律商联讯风险信息公司(简称:律商联讯)是一家全球领先的风险信息服务提供商,向保险、医疗健康、法律、金融服务等行业及政府机构提供风险预测、评估及管理服务。律商联讯是励讯集团(RELX Group,原名励德爱思唯尔集团Reed Elsevier)的全资子公司。励讯集团是世界最大的专业信息解决方案提供商之一,在科技、医学、风险、法律和商业信息等领域为120多个国家的客户服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23