京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据算得出曹雪芹的生卒年吗
2015年被不少学者认为是曹雪芹诞生300周年。不过,关于曹雪芹的出生年份,学界一直有不同的看法:除了1715年之外,还有一种观点认为是在1724年,双方都很难说服对方。最近,台湾学者黄一农通过大数据搜索获得的结果,为揭开此谜底又前进了一步。
大数据能否帮我们找到曹雪芹的人生轨迹?上海师范大学教授、中国红楼梦学会副会长孙逊就此认为,很难期待大数据为红学研究带来重大突破,但大数据确实可以帮助我们解决《红楼梦》和曹雪芹研究中的一些具体问题;不仅如此,这一新兴的技术手段对于古典文学研究也具有一定的普遍意义。
“四十年华”,究竟是四十岁还是四十八九岁
曹雪芹去世后,他的至交敦诚写下了《挽曹雪芹(甲申)》一诗:“四十年华付杳冥,哀旌一片阿谁铭?”同是曹雪芹好友的张宜泉也写过一首《伤芹溪居士》,题注中称“其人素性放达,好饮,又善书画,年未五旬而卒”。
因为以上两则资料,引发了后世关于曹雪芹生卒年的长期争议。包括周汝昌在内的一批学者根据“四十年华”,认定曹雪芹只活了40岁,并由此推断出他生于1724年。另有研究者认为,如果这一论断成立,曹府被抄家时曹雪芹只有3岁,不应该有他在《红楼梦》中所表现出来的对于繁华生活的深刻记忆;相比之下,如果依据“年未五旬而卒”,即活了四十八九岁来推算,他应生于1715年,曹家被抄时他已经12岁。这就比较符合“秦淮旧梦忆繁华”的年龄,而且和该年曹頫的奏折中提到的曹颙的遗腹子相吻合。但这样的话,“四十年华”又如何解释?
最近,大数据为解决这一难题提供了突破口。孙逊教授介绍,不久前在北京张家湾举办的红学会上,台湾地区计算机专家、倡导e考据的黄一农先生利用大数据,以“四十年华”“五十年华”“六十年华”为关键词,搜寻了包括董邦达在内的曹雪芹同时代人的诗作,结果发现,以“四十年华”来表示四十八九岁,“五十年华”表示五十八九岁,“六十年华”表示六十八九岁,是那个时代通行的用法。这样,“四十年华付杳冥”与“年未五旬而卒”,就变得不仅不矛盾,而且完全合榫。
曹雪芹的朋友圈,或为红学研究提供新发现
孙逊认为,目前,关于曹雪芹和《红楼梦》的直接资料中再出现突破性的新发现比较困难,但是大数据可以为一些至今悬而未决的问题提供旁证。所谓悬而未决的问题,包括曹雪芹的人生踪迹以及《红楼梦》的成书年代等,这些都可能对后世了解其生平与创作有着重要作用。
比如学界普遍认为,红学研究要有新发现,从曹雪芹的朋友圈入手或许是一条重要的路径。曹雪芹本人多才多艺,因此朋友圈人数众多,范围很广,细算下来有数十人之多,包括诗人、书画家、王公贵族和汉满官员,他们或多或少留下了一些和曹雪芹相关的作品,提供了与他相关的一鳞半爪的信息。如果将其庞大的朋友圈的作品数字化,说不定可以从中发现更多像“四十年华”一类有价值的信息。
整个古典文学研究,也许都将受惠于大数据
实际上,大数据对于古典文学研究的意义不止于红学。以清光绪年间上海的一位民间才子郭友松为例,他用松江方言写成的《玄空经》,是继清乾隆、嘉庆年间,上海才子张南庄创作的《何典》之后又一部杰出的吴语讽刺小说。然而长期以来,关于郭友松的一些资料多为民间口口相传的逸闻轶事,缺少可靠依据,因此学界对他研究甚少。较早对其进行关注的叶德均和白蕉,都因为资料所限,在包括其生卒年在内的一些基本问题上无法作出确切考证。
近年来,随着相关材料不断被数字化,一些线索开始浮出水面。比如孙逊和他的团队一起,通过晚清民国报刊数据库,查找出了1887年《申报》上刊登的几首贺郭友松70大寿的诗词,以及他在墨海书馆《益闻录》上发表的数十篇杂论,再加上已出版的纸质文本《张文虎日记》《王韜日记》中对他的人生踪迹的记载。此外,校勘学家、小说评点家张文虎、江苏学使李小湖、画家张鸣珂等人的文集,由此大致勾勒出郭友松的人生轨迹和著述情况。如果没有大数据,恐怕一时很难发现他散落在报刊上的著述与生日信息;但如果不仔细找寻和细读那些还没有电子化的古籍文献,研究也不可能深入。
在孙逊看来,大数据未必能够解决古典文学研究中的所有问题,特别是一些重大问题,但它可以提供一些资料和线索;如果运用得当,并和直接查找纸质文献结合起来,就可以使相关研究如虎添翼。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23