
大数据时代 传统银行如何突围互联网金融?
近年来,传统商业银行和互联网金融之间的博弈已被各界炒至白热化。互联网金融企业掌握了最新的大数据,且随着银行客群下沉、互联网金融客群上移,外加混业管制放松,双方的“客群交叉地带”正不断扩大。对于传统商业银行而言,如何有效利用既存的大数据?如何在互联网金融时代突破重围?
近日,在复旦大学管理学院举行的“基于中国大数据的市场洞察和管理启示”国际研讨会上,浦发银行科技开发部副总经理陆小勇表示,互联网公司手里的数据未必够大,而传统商业银行手里的数据也未必就小,关键在于数据质量和能否有效利用。
“客群交叉地带”扩大
尽管近几年互联网金融的崛起的确使得银行感到了压力,但事实上,互联网金融并没有改变金融的本质,例如银行做的是存、贷、汇、理财等四项基础业务,而互联网金融也是如此。
但不可否认的是,互联网金融的确改变了游戏规则,传统银行的业务模式、客户获取、机构竞争力,甚至银行业格局正在受到影响。
当前,双方“客群交叉地带”的逐步扩大也进一步加剧了传统商业银行谋变的压力。具体而言,起初二者存在互补性,互联网金融填补了传统银行的客户群和服务空白,比如互联网金融关注贷款额度500万以下(更多是100万以下的长尾客户)。然而,二者竞争也在加剧。“银行客群下沉,互联网金融客群上移,混业管制放松,从而形成了‘客群交叉地带’、”服务交叉地带“的竞争。
对此,陆小勇也表示,寸有所长,尺有所短,关键是场景。比如,银行存在线下优势,注重流程管理,强调规范严谨,讲求诚信、品质、放心;而互联网金融企业具备线上优势,注重交易驱动,强调大数据法则,讲求边界、价优、个性。“大数据为银行防范的是500万-1000万元损失的风险,为互联网金融做的是驾驭防范500-100个1万元损失的风险,银行在这方面的大数据运用非常薄弱。”
就2015 年来看,根据银监会公布的数据,截至2015 年三季度末,我国商业银行不良贷款余额11863 亿元,不良贷款率1.59%,商业银行不良贷款余额增长3437亿元,已大幅超过2014 年全年的水平。
数据质量是关键
当前,“大数据时代”已成了全民舆论和各类商业模式的中心,那么对于传统银行而言,如何真正利用好手中的大数据呢?
陆小勇指出,互联网金融手里的数据未必够大。“金融是周期性行业,互联网金融的数据之大,在于更新快、种类多,但是如果没有走过荆棘的波峰和波谷,就还要积累,才能真正可信。”
相较之下,传统银行手里的数据也未必就小。“传统银行缺乏的其实不是数据,而是挖掘数据的意识和能力,特别是对客户行为分析的能力。尤其是银行间的数据共享是有限度的,主要的障碍在监管和法律方面的问题,这也对数据有效利用形成阻力。”他称。
未来,对于银行而言,当前不应该把太多精力花在追求“完美”的数据质量上。“海量数据,快速更新、各式多样、源头众多,让传统的、全面的数据清洗在大数据应用场景中失去意义。数据质量是用出来的,不是管出来的,”
此外,大数据分析要强调相关性,允许试错,这好比“沙里淘金”,从大量的“相关性”中总结沉淀出“因果性”,以“量”换“质”。
同时,陆小勇也表示,交易系统和统计报表要强调“因果性”,要求所有结果可严格回溯到源头(比如总分核对),从源头抓起,防止“垃圾进垃圾出”。“尤其是参与人、产品、协议、渠道、时间、财务以及资产、日期、汇/费率等公用信息在内的‘主数据’的质量。”
银行突破需“三步走”
面对互联网的冲击,陆小勇认为银行应该对三大方面给予更大关注。
第一,积极推进存量业务互联网化和交叉地带的差异化、特色化。向互联网企业学习,根据大数据定制化服务,并发挥资金成本,资本、风控等优势形成特色,向交叉领域渗透。
其次,要积极打造数字化银行。一方面加快实现银行对客户感知的数字化,实现渠道接触的数字化,自身运作流程的数字化,以及客户和银行资产增值的数字化,同时也密切关注“互联网+区块链+投行制造”等技术发展的影响。
最后,积极筑巢引凤也对“以人为核心”的传统业态至关重要。筑巢就是要因地制宜地优化银行自身组织构架和运作机制,引凤就是要设立特殊的人才引进、培养和选拔机制,符合互联网创新的需要,特别是对年轻人才的发展。近年来,传统商业银行人才的流失较为严重,而互联网金融企业也成了主要的吸纳场所。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22