
大数据时代 传统银行如何突围互联网金融?
近年来,传统商业银行和互联网金融之间的博弈已被各界炒至白热化。互联网金融企业掌握了最新的大数据,且随着银行客群下沉、互联网金融客群上移,外加混业管制放松,双方的“客群交叉地带”正不断扩大。对于传统商业银行而言,如何有效利用既存的大数据?如何在互联网金融时代突破重围?
近日,在复旦大学管理学院举行的“基于中国大数据的市场洞察和管理启示”国际研讨会上,浦发银行科技开发部副总经理陆小勇表示,互联网公司手里的数据未必够大,而传统商业银行手里的数据也未必就小,关键在于数据质量和能否有效利用。
“客群交叉地带”扩大
尽管近几年互联网金融的崛起的确使得银行感到了压力,但事实上,互联网金融并没有改变金融的本质,例如银行做的是存、贷、汇、理财等四项基础业务,而互联网金融也是如此。
但不可否认的是,互联网金融的确改变了游戏规则,传统银行的业务模式、客户获取、机构竞争力,甚至银行业格局正在受到影响。
当前,双方“客群交叉地带”的逐步扩大也进一步加剧了传统商业银行谋变的压力。具体而言,起初二者存在互补性,互联网金融填补了传统银行的客户群和服务空白,比如互联网金融关注贷款额度500万以下(更多是100万以下的长尾客户)。然而,二者竞争也在加剧。“银行客群下沉,互联网金融客群上移,混业管制放松,从而形成了‘客群交叉地带’、”服务交叉地带“的竞争。
对此,陆小勇也表示,寸有所长,尺有所短,关键是场景。比如,银行存在线下优势,注重流程管理,强调规范严谨,讲求诚信、品质、放心;而互联网金融企业具备线上优势,注重交易驱动,强调大数据法则,讲求边界、价优、个性。“大数据为银行防范的是500万-1000万元损失的风险,为互联网金融做的是驾驭防范500-100个1万元损失的风险,银行在这方面的大数据运用非常薄弱。”
就2015 年来看,根据银监会公布的数据,截至2015 年三季度末,我国商业银行不良贷款余额11863 亿元,不良贷款率1.59%,商业银行不良贷款余额增长3437亿元,已大幅超过2014 年全年的水平。
数据质量是关键
当前,“大数据时代”已成了全民舆论和各类商业模式的中心,那么对于传统银行而言,如何真正利用好手中的大数据呢?
陆小勇指出,互联网金融手里的数据未必够大。“金融是周期性行业,互联网金融的数据之大,在于更新快、种类多,但是如果没有走过荆棘的波峰和波谷,就还要积累,才能真正可信。”
相较之下,传统银行手里的数据也未必就小。“传统银行缺乏的其实不是数据,而是挖掘数据的意识和能力,特别是对客户行为分析的能力。尤其是银行间的数据共享是有限度的,主要的障碍在监管和法律方面的问题,这也对数据有效利用形成阻力。”他称。
未来,对于银行而言,当前不应该把太多精力花在追求“完美”的数据质量上。“海量数据,快速更新、各式多样、源头众多,让传统的、全面的数据清洗在大数据应用场景中失去意义。数据质量是用出来的,不是管出来的,”
此外,大数据分析要强调相关性,允许试错,这好比“沙里淘金”,从大量的“相关性”中总结沉淀出“因果性”,以“量”换“质”。
同时,陆小勇也表示,交易系统和统计报表要强调“因果性”,要求所有结果可严格回溯到源头(比如总分核对),从源头抓起,防止“垃圾进垃圾出”。“尤其是参与人、产品、协议、渠道、时间、财务以及资产、日期、汇/费率等公用信息在内的‘主数据’的质量。”
银行突破需“三步走”
面对互联网的冲击,陆小勇认为银行应该对三大方面给予更大关注。
第一,积极推进存量业务互联网化和交叉地带的差异化、特色化。向互联网企业学习,根据大数据定制化服务,并发挥资金成本,资本、风控等优势形成特色,向交叉领域渗透。
其次,要积极打造数字化银行。一方面加快实现银行对客户感知的数字化,实现渠道接触的数字化,自身运作流程的数字化,以及客户和银行资产增值的数字化,同时也密切关注“互联网+区块链+投行制造”等技术发展的影响。
最后,积极筑巢引凤也对“以人为核心”的传统业态至关重要。筑巢就是要因地制宜地优化银行自身组织构架和运作机制,引凤就是要设立特殊的人才引进、培养和选拔机制,符合互联网创新的需要,特别是对年轻人才的发展。近年来,传统商业银行人才的流失较为严重,而互联网金融企业也成了主要的吸纳场所。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29