
金融大数据的四步走战略安全性是关键
金融大数据的四步走
金融大数据,目前有四个阶段。第一阶段是基于数据存储;第二阶段是分布式计算;第三阶段是大数据挖掘与分析;第四阶段是数据服务。对于商业银行,包括工商、建设、农业、交通和中行这国有五大行来说,都处于第一阶段。其中,建行处于平台选型阶段。农业银行已经完成数据存储方面的工作,但还未上线。而张子良老师负责的光大银行项目,在2013年10月上线,是国内第一家真正意义上将金融大数据应用到银行核心业务系统的案例。
银行的大数据处理
银行等金融机构,对大数据的处理需求有其特殊性。第一个就是结构化数据存储,第二个是数据挖掘。下面我们将逐一为您解开。
结构化数据存储,商业银行有实时查询数据库,用来处理历史金融数据。受限于传统ROE(Oracel、DB2、Sybase等)数据库的单表数据量瓶颈。银行数据超过一定上限就会影响查询效率。解决瓶颈的方法只能通过提高成本,大量购买高性能硬件和应用软件来解决。虽然银行IT部门预算丰富,但也还是需要平衡性能与成本的关系。
另一方面,银行需要在现有的数据上进行增值挖掘。如果依靠传统VR,对成本的影响巨大。采用大数据技术、采用分布式集成框架、采用开源框架,一方面满足了成本依赖,另外一方面运算性能方面有所提升。
在业务数据模型方面,商业银行分为两个层面。第一个层面就是面向业务层面,我需要选择哪些参数来构成我参与预算的数据模型。这是业务层面上面,这一部分是与以前的模型一致。
另外一部分就是针对数据模型还有什么样的计算方式,需要哪些数据的输入,这方面发生了变化。因为你传统离岸模式是单机的,运算性能始终都是它无法突破的东西。所以说它对数据处理的时候,往往是基于销量数据的,基于出让数据做小批量的数据尝试,然后得出一些规律性的东西,然后再反向推导到其它数据,这是传统的模式。在这个环境里面有了一种突破,就是我可以去全量数据,构建数据模型的参考体系,这个数据量更大。另外一块性能更高一些,比单机模式要快。
金融大数据安全性
数据安全其实是一个相对的改变。因为在这里面大数据技术与数据安全性能整个要求本身没有直接的关系。怎么说呢?如果不采用大数据技术,安全性是不是一样面临同样的问题呢?对于传统模式,无论你采用什么样的技术,同样面临数据安全性的问题。
所以在这个里面包括各个环节,像存储的安全,传输的安全,展现的安全。这种模式,传统的银行采用的模式里面,不包括物理网站的隔离,包括访问权限的控制,包括软加密这些都是在传统的模式里面适用的。大数据技术,与银行数据安全性没有直接的关系,只不过区别是什么呢?
大数据技术是一个新的技术体系,银行原来需要单机处理的东西,现在需要在多个节点去参与进来,这样带来一个什么样的挑战呢?就是必须保证集群是能够被特定的用户去访问,而且特殊的节点不能够被假冒。如果这个节点正在自动化处理,如果黑客冒充我的某个节点,要保证不会导致数据的泄露。这种情况下其实是大数据在安全方面特殊的要求点,必须做到物理网站的隔离。只有授权节点能够参与到我集群的工作中,这就是访问的安全。
节点数据的传输,这一块目前来讲银行的解决办法还是基于物理网隔离和用户的授权。这里面还是有瓶颈的,节点与节点之间,数据在共享的时候,速度还是瓶颈。这种加密需要去改造现有的大数据框架,目前来讲还没有看到国内银行有解决这个问题的。
总结
金融大数据,目前还处于一个逐步实施的阶段。商业银行中的金融大数据,既包括传统的BI结合,也包括对大数据环境底下数据分析挖掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29