京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 商业取经向谁靠齐
偶然一次的网页点击、搜索引擎中的关键字查询、购物网站中的浏览痕迹,每一个小小动作的背后,都给了互联网公司一次增加了解你的机会。大数据时代已经轰然到达。BAT(百度、阿里巴巴、腾讯)三巨头对于大数据的布局有何异同?谁更有潜力?枯燥的数据如何转换成生意?
百度:技术为王
百度公司的大数据产品正一个接一个的落地。
今年1月26日,百度上线了基于定位服务的人口迁徙大数据项目“百度迁徙”。在春运期间,用户通过该项目实时查看全国范围8小时内的人口迁徙轨迹及特征。
近日,百度又上线了“百度预测”,可以对景区舒适度进行预测。这个应景清明小长假的产品后续还能在更广泛的领域发挥作用。例如,城市旅游预测、感冒流行趋势预测、高考考研预测、金融预测、票房预测等,对各行业细分领域进行数据解读。
虽然百度方面表示“百度迁徙”是一个社会公益项目,项目本身并无赢利的考量和计划,“百度预测”也没有解决商业化的问题,但其实大数据这把“金钥匙”已打开了百度商业价值的大门。
百度数据更大的想象力在于,它在以此为依托,一步步颠覆传统行业。
以金融业为例,4月3日,百度拿到证监会颁发的“基金销售支付牌照,这意味着百度将可以面向用户提供低成本基金支付服务。早在2013年10月,“百度金融中心-理财”上线时,百度便透露了做互联网金融的动机,百度百付宝总经理章政华表示,百度每天搜索金融相关检索词的数量达到3.3亿,银行产品和证券、基金产品的搜索占比高达77%。这些“牌照”和业务功能,既是百度完善移动服务交易闭环的重要工具和百度金融理财的重要载体,也是百度实现商业变现的重要保障。
阿里巴巴:交易至上
根据阿里巴巴董事局主席马云最新的内部邮件,“云端+大数据”是阿里的战略。不懂技术的马云,将如何带领阿里巴巴步入大数据时代?
消费者在淘宝或天猫上的每一次消费记录,阿里巴巴都会记录在案,交易以及信用数据成为阿里的一手材料。淘宝建立的数据地图,是阿里大数据的第一步。每一个数据都由很多个数据产生,建立数据地图,以追溯到数据的源头,提高数据的质量和价值,数据魔方、聚石塔等产品,也是阿里大数据的初步应用。
作为支撑大数据密不可分的一部分,阿里的云平台阿里云成立于2009年。而根据阿里数据,阿里云也的确帮助阿里扛过了2013年的“双十一”高峰。据统计,2013年“双十一”的1.88亿笔交易中,75%的交易都在阿里云平台上运行,实现了零漏单、零故障。而2012年这一比例只有20%。
然而,阿里并不是一家技术驱动的公司,而是业务驱动的。通过大数据诞生的各种用户行为分析,也不应仅仅停留在1分钟的文胸销量到底等于多少个珠穆朗玛峰。如何让数据扩展到交易领域,让天下没有难做的“数据生意”,是阿里面临的最大挑战。
腾讯:社交为先
在BAT三巨头里,腾讯是最后一个搭建云平台的。2013年9月,历经两年研发内测的腾讯云生态系统,终于向整个互联网敞开了大门。作为一家有着强烈社交基因的公司,腾讯拥有的社交大数据可以帮助其完成数据的制造、流通、消费和挖掘。
腾讯有着丰富的社交矩阵,大数据来源于多种社交渠道,包括腾讯微博、QQ和微信。然而,不同社交平台的特性决定了数据的差异,例如,在QQ空间等私密性更高、黏性更好的社交平台上,消费者可能更愿意透露自己的生活状态及需求。而随着微信商业化的推进,朋友圈产生的数据还需要花更大力气加工处理,才能筛选出真正有价值的、能够代表用户行为模式、兴趣偏好的数据。对于腾讯而言,社交矩阵之间的数据打通,会大大提高其大数据的价值,才可以使投放广告的企业实现更加精准的营销。
值得注意的是,腾讯效果营销平台广点通代表的大数据应用已经发挥了关键性作用。小米旗下新品红米Note日前与QQ空间再度展开的社会化营销合作,创造了1500万的手机网络预约人数纪录,开售第一秒吸引41.9万人点击抢购,成为基于社交数据营销的经典。
总结
说到底,大数据的利用难点在于技术。从数据的收集到存储,再到整理,直到最后的挖掘利用,均是技术活儿。百度含着数据出生,具备天生的大数据挖掘能力。随着支付闭环的打造,数据也可以在各种各样的场景找到落脚点。而阿里和腾讯作为业务驱动和产品驱动的公司,要下大力气将底层的大数据打通,进一步挖掘数据,让数据更好地为公司服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15