京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Wind数据显示,截至5月9日,公募基金中的量化产品已经达到78只。众多基金中,华商大盘量化精选自其成立以来业绩始终处于相对领先的位置,其采用的量化模型基于对交易数据的挖掘。而正在发行的混合型基金也延续了华商“量化”产品的优势。华商新量化拟任基金经理费鹏认为,在震荡市中,个股和结构化的行情比较多,高频的交易数据较低频的宏观数据适用性更强。从交易数据中寻找被资金认可的个股,再从基本面进行验证,由此形成独树一帜、回报可观的股票组合。
通过交易数据挖掘个股秘密
费鹏介绍,虽然目前已有的量化公募基金产品中,大部分的量化模型基于基本面因子,然而,华商的量化则通过每一笔交易数据,监测异常表现的个股,并寻找背后的因素。这些因素可能是基本面的拐点,也可能是主题性投资机会或者是特殊事件。
通过量化交易数据筛选的股票与传统主动基金经理通过自上而下主动挖掘的股票有明显不同,这一点从华商大盘量化精选的前十大重仓股就可以窥探一二,多只重仓股都兼具基本面拐点和事件性机会。
费鹏透露,在2013年成长股“一统天下”的行情中,华商大盘量化精选并没有过多押宝创业板的股票,但是仍然创造了逾30%的回报,而贡献收益的大部分个股都是通过挖掘交易数据而来。
不同于其他公司的研究员荐股机制,华商量化团队通常是通过量化模型分析具有两年以上完整交易记录的个股形成初选股票池,然后经过行业研究员的实地调研和深入分析获得基本面信息,最终形成投资池。如果这些股票在基本面也有支撑,那么可能成为前十大重仓股,获得重配。
在风险控制方面,费鹏运用金融物理学的方法来判断市场风险。为此他制作了一个反映市场信息混乱程度的模型——信息熵值模型。费鹏发现,当市场的信息越混乱的时候,市场就越稳定,而熵值越小,短期风险就越大。经过历次验证,这个熵值模型在控制风险方面是非常有效的。
目前费鹏管理的另一只基金——华商新量化灵活配置混合型基金正在发行,将采用同样的量化策略。他认为,基于交易数据的量化投资更适合震荡市,因为在震荡市中,更容易出现个股的行情。个股的涨跌受大盘的影响也不大,而资金也更推崇个股。
普涨单边市出现概率较小
费鹏认为,今年出现普涨的单边市概率比较小。从宏观经济层面,经济疲软依然持续,宏观数据继续探底;从资金面角度,流通市值处于高位,场内资金不足以支撑大幅上涨;同时IPO重启等事件性因素对大盘依然承压,因此A股目前不具备普涨的条件。
但当经济低于预期,政策的对冲预期会升温,近期常州等地方政府在购房政策上的放松,说明地方在采取对冲策略。
“只有在对冲失效的时候,对投资者的打击才是最大的。”费鹏说,“在有对冲预期的时候,由于出来什么样的政策的不确定性,反而不会出现特别大的悲观,毕竟还有腾挪的空间。”
费鹏认为,今年的市场将保持情绪化,震荡格局仍然持续。但是从大类资产配置的角度,股市值得关注。黄金现在处于明显的下跌周期,房地产也已经出现拐点,信托产品也将受制于违约风险。因此,股市在财富管理中是优势资产。股市中一定有一部分资金较为灵活,在不同的资产中做腾挪,因此,只要有赚钱效应,比如热点板块,则股市仍然有可为之处。
对于IPO重启,费鹏认为,投资人士不用过于悲观,但也不能太过乐观。早在2005年股权分置改革和2009年的创业板设立,都曾经带来对资金分流的恐慌,但事后都被证明是过于悲观了。随着IPO时间表的逐步明确,场内资金的投资行为将敢于“落地”,成交量也将逐步有所扩大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22