京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可解险企展业之困 _数据分析师
大数据的日益崛起不仅从根本上改变了数据技术,而且在一定程度上影响了各行各业发展,作用于民众日常生活的方方面面。以数据为本的保险业也无一例外受到了大数据的“熏陶”,大数据将有助于保险公司准确收集、分析处理投保人个性化的风险信息,创新保险产品和服务,降低信息不对称风险,同时延长产业链和升级商业模式。本期《保险周刊》特别策划了一组报道,对保险领域大数据运用的当下和未来进行探讨,敬请关注。
保险业大数据进程正在加速中。继中国保险信息技术管理有限公司接管各地车险信息平台,着力于搭建全国车险信息平台后,日前中国保险行业协会宣布,为了集中与共享行业产品信息,“中国人身保险产品信息库”于10月正式上线运行。
随着大数据时代的到来,如何顺应行业发展变更、把握机遇升级迭代,已经成为保险公司不得不正视的问题。
人身险信息库首建成
记者在采访中了解到,该人身险产品库实现了将2009年新《保险法》实施以来,所有人身保险公司在我国境内销售和已停售的人寿保险、意外伤害保险、健康保险、养老保险等全部人身险产品的信息入库工作。今后,消费者可上网扫描所持有的条款二维码,即时查看产品信息和条款文本,验证条款内容的真实性,并可登陆中保协网站,通过10个维度23个查询条件进行查询和比较。
“这是保险业复业36年来,首次在人身险领域尝试并成功建成的行业产品信息总库。”中保协相关负责人透露。
尤其值得注意的是,中保协相关负责人指出,通过对人身险产品库相关信息的综合研究与多角度分析,将有助于行业全面了解产品发展现状及存在的问题。并且,产品库首次实现了行业产品全险种覆盖,并将不断更新,从真正意义上实现了行业产品及条款数据的归集,有利于我国人身险产品的公开化和透明化,对进一步深化行业产品改革,鼓励公司加强产品创新、推进行业产品条款的通俗化、标准化、简单化以及防范销售误导等方面都具有深远影响。
事实正是如此,该人身险产品库的建成是加快保险业大数据进程的重要举措,有助于夯实行业基础设施建设、促进行业产品信息集中与共享、提高行业综合经营管理水平以及为广大保险消费者提供有效服务。
产品服务创新迎机遇
正如中国人保财险股份有限公司执行副总裁王和所言,大数据时代的到来使得对保险全量、大规模、多样性、实时、潜在数据的获得及快速分析成为可能,为保险产品和服务创新带来了全新的机会与广阔的空间。
众所周知,寿险产品是基于样本生命表数据,结合利率、费率等信息,运用精算模型来确定实际保费。虽然随着时间的推移和社会的发展,保险标的的风险状况会不断变化,但是保险费率一经确定,在保险期限内一般都是固定的。这无疑在一定程度上为保险公司带来了承保风险,而大数据正好可以解决这个难题。通过大数据,保险公司可以根据保险对象实时的风险信息变化及时调整保险费率,使得保险产品更具有个性化,同时有效控制风险。
那么,这些数据信息要从哪里找?事实上,保险公司在长期经营过程中已经积累了大量的历史数据和信息,而且每个人的工作、消费、休闲也会时刻产生海量数据。在不侵犯个人隐私的前提下,保险公司可以收集个人生活信息数据,并以此为基础进行分析处理,实现每个不同个体的“个性精算”,从而创新寿险产品。
在日前召开的第15届中国精算年会上,保监会副主席陈文辉也提出,近一年来兴起的智能手环、智能手表等可穿戴设备可以收集脉搏、睡眠、运动量等与个人身体状况相关的大量数据,精算师完全可以考虑合理利用这些数据,形成科学的精算模型,按照个体特征开发定制产品,为精准定价提供重要基础。
值得一提的是,目前我国人身险领域已经出现大数据时代的新型保险——基于使用的保险(UBI),通过培养用户习惯来减免保费。“阳光星运动健康管理计划”规定,如果用户运动年累计达标在200天以上,将能获得保费全额返还,相当于用户零费用享有了重大疾病保险,自7月15日在淘宝上线以来累积售出59件。
商业模式升级或实现
“就保险业而言,大数据不仅改变了数据的数量、质量和维度等技术指标,更重要的是改变了保险精算的理论基础,继而改变了保险经营的基础环境,给保险行业带来根本性,甚至是颠覆性的变革。”王和直言,保险业需要审时度势,与时俱进,用大数据时代的眼光和思维,重新考察保险的经营逻辑,实现一种基于新技术创新应用的商业模式创新。
王和认为,大数据使得保险企业能够聚合上下游的资源,再造保险价值链。由于车险部门积累了大量车辆损失数据、修理费用数据、零件损失及更换数据,健康险部门积累了大量健康数据、疾病治疗数据、医疗费用数据,因此借助于大数据的积累、整合与分析,保险公司可以与汽车维修、零配件供应、医院、药品生产企业等机构建立更加紧密的合作,延伸保险的服务边界,一方面降低保险经营成本,提高利润,另一方面也为客户提供更加便捷的“一站式”服务,提升客户体验。
与此同时,数据也将成为企业非常重要的一项资产。保险公司掌握的大量承保、理赔等业务数据,经过分析、挖掘及应用,将衍生出众多的商业机会,例如建立二手车交易中介市场,为被保险的机动车辆进行担保;建立资源与服务的团购平台,出售医疗健康服务、防灾防损服务、车辆维修保养服务等。
此外,由于具备与客户频繁交流的优势,基于使用的保险(UBI)或将有机会大大改善保险公司与客户的日常关系,全面渗透到客户日常风险管理。通过坚持良好的生活习惯并记录反馈给保险公司,客户每年将有可能主动与保险公司接触很多次,使得保险日渐融入消费者日常生活,有助于解决保险公司“信息少”、“获客难”、“展业困”等问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16