
云计算让人享受现在 大数据帮人预测未来_数据分析师考试
几年媒体一直在喊云计算时代来了,大数据时代来了。云、云端、云计算、大数据,这些名词到底是什么意思?读完本文,您应该会有一个更清晰的认知,意识到我们的工作生活已经和云计算与大数据紧密的联系在一起。
历史回顾:发明家爱迪生落败于交流电网
云计算被业界人士广泛认为是第四次信息技术革命,如果您还没有意识到这句话的份量,不妨重温一下第二次技术革命即电力革命中输电方式之争,可一见端倪。
爱迪生先后发明了电灯泡、电流表、发电机等,构建了一套完整的供电系统,并采用直流电输送。在当时和之后相当长时间内,没有技术支持直流电实现长距离输送,虽然交流电可以解决远距离输电问题,但爱迪生固守直流电,并鼓励每个社区自己发电,于是分散的小型电厂遍地开花。
不用再多讲,您也已经知道结果,因为现在只要有个与电网相连的电插头,电力供应就完全搞定,早已不需要自己购置发电机发电了,而且用多少电付多少钱,省钱省心。在这一点上,生活从此变得简单。这其中主要是交流电的功劳。
云端服务好比公共设施
公共设施的存在就是为民提供生活便利,打开电闸就来电,打开水龙头就有水,开通电话户头就可以通话,用户不再关心这背后的硬体、软体如何工作。云端服务和这些公共设施一样,是同一模式,所以云端又被称为公用计算(utility computing)。
不论是什么型号的电脑,在云端出现前,都要自己或请人在这台机器上安装各类软体程序,如办公、杀毒、游戏、视频播放、图像设计、财务软件或ERP管理系统等。这些软件和系统还要不断的更新,企业更需要雇用专业的IT技术人员维护系统。有了云端,这些都不需要了。
未来电脑采购将有大变化
云端服务除了可以帮用户节省电脑软体购买费用,还可以为企业节省大量人力和IT维护成本。
除了所有的数据都可存在云端外,现在的趋势是,所有的软件,不管是简单的还是复杂的,都在往云端上搬。他认为,这将极大影响未来的电脑与软体购置。将来的计算机,不需要再买配置豪华(fancy)的计算机,可能只需要买一个很简单的网络计算机,只要跟网络相连接,你就可以干很多事情。所以,可以省你很多钱。
网速不会是瓶颈
为方便理解,用户可以把云端想像成一个有超强运算和存储能力的计算机,它是一个虚拟概念,但又有物理实体,通常是由上百万部主机连在一起构成。如此,数据存储、软件程序、分析计算都在云端服务器完成,这样一来,用户可能会担心速度是否有延迟。
网络速度的确对云端与终端间的数据传送至关重要,但现在网络的发展特别是光纤电缆的传输速度相当快。预计在不久的将来,下载一个大的高清度电影,可能只需十秒钟。网络技术不会是瓶颈问题。随着网络技术的发展,你根本感觉不到网速造成的困难,就像用你自己的计算机一样。
大数据时代来临
云端与大数据互为表里。用户在使用云端服务的同时,特别是使用社交网站、即时通讯、电子邮箱等,每天都在产生着海量的数据。根据IBM在11月的报告,2014年全世界平均每天产生2.3泽字节的数据(1泽=10亿TB),大约是2012年的920倍。
所谓大数据除了数量大、内容多,它和传统资料库式的结构数据(structured data)还有根本不同。社交媒体上的音乐、图片、视频等资料都是非结构性的(unstructured data),需要借助云计算等新的技术工具才能进行收集、分析和处理。数据本身没有实际意义,只有从中分析出有用的知识,数据才变得有价值。
大数据预测应用于市场营销
为什么今天大数据在产业界深受重视?因为每一个企业、生意人都希望知道客户或消费者在想些什么,对某件产品是否满意等等。畅所欲言的社交媒体上应该会有这方面的原始信息,可是数据实在是太多,如果要寻找起来就好像大海捞针。现在有了新的技术,大数据有了实际用武之地。
以感恩节期间的黑色星期五促销举例,现在的商家在选择促销产品与时间点时,就已经在参考从社交网站大量资讯中分析得来的情报,可以提前获知什么产品最热门,从而有针对性的备货和宣传。
大数据预测结果更精准
大数据预测和传统的经验预测有什么根本不同?大数据的一个好处就是可以很快的预测最近的将来。过去传统的市场分析,是根据过去两年、三年的数据,那都已经淘汰了。因为客户、消费群,他们的观念天天在改变,今年的想法和去年的已经不一样了。新的产品能否满足消费者最新的需求?这是企业无比关注的问题。
苹果公司也不会知道iPhone卖的到底好不好,客户是否忠实,有什么批评意见。对产品有不满的人可能会在网上讨论,发布自己的看法,但不一定反馈到商家那里。如果商家能够在第一时间捕捉到这些信息,效果会远胜于打电话或问卷调查。如果等到用户退换产品或客户用脚投票,出现销量下降,那时间就更晚了。大数据技术可以帮助企业在第一时间捕捉到消费者的动向。
大数据人才吃香 传统IT岗位告急
大数据分析在预测领域的应用深受企业和政界推崇,也使得相关的技术人才需求倍增。
在全世界,2015年大概需要有400万大数据和云技术人才,光美国就需要200万人。现在找不到人。技术好的人很快就会被出高价抢走了,很难挖到人。所以为什么现在很吃香就是这样。
相反,很多现有的岗位会因为云计算的普及而消失掉。现在每个大公司都有专门的计算机房,有服务器,雇用大量IT技术人员维护,比如杀毒,升级换代。但随着云端应用的普及,只要有因特网,很多工作在全世界都可以做,云端改变了生活方式,改变了工作性质。一些工作可能会迁移到印度或中国。一旦所有这些东西搬到云端以后,这些服务人员就没有工作了。这对现在的很多IT员工很危险啊。
对于准备进入和云技术这一领域的求职人士或学生,因为要分析数据间的关系,需要设很多的方程式,因此需要有很好的逻辑思考能力,数学方面要好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30