
互联网+时代 “大数据”成为“大泄露”_数据分析师考试
在互联网+时代,谁能保障我们的隐私?有什么高科技可以帮助企业更全方位的保护自己的“大数据”吗?
当然有,一旦涉及到这种数据敏感的事情,必须要找生物识别技术啊。目前,主要四种生物识别解决方案可以帮助企业降低成本,提高效益。
1、物理安全控制
我们所熟知的个人身份识别的方式有很多种,例如:锁,密码,ID卡等,但是现在都已经过时了,他们不但让人没有安全感而且还需要很大一笔费用来维护。美国零售商协会公布60%的存货损失是由于员工盗窃导致的,仅在2013年就损失了330亿!显然,在行业内提高安全控制系统已经势在必行。
生物识别能够帮助企业多一层保护,特别是对一些重要的资产或基础设施进行保护,例如:办公楼,核心实施以及一些未经授权的区域。
2、人力资源管理
生物识别在企业中应用最普遍的方面就是人力资源管理系统,它是利用虹膜、指纹、静脉识别来进行追溯和考勤。美国Acuity公司曾做过一次市场报告,报告指出,截止到2008年,全球生物识别考勤设备的应用已经超过400万,这些设备的使用可以帮助防止员工无故翘班,简化流程,提高效率,这对于企业来说无疑是巨大的收益。最近一项研究表明,美国公司每年由于员工偷懒会失去近40亿美元。此外,行业研究已经明确表明,大多数企业至少会将总预算的50%用于薪酬和员工管理方面,特别是对于大型企业,例如工厂或工业区,他们的工人数量是成百上千的,自然成本也就高很多。
生物识别跟踪系统已经显现出明显的节约优势。正如报告中支出的,那些所采用生物识别系统的公司,他们已经节约了预算总额的5%。美国Crossland公司的IT经理说:“估计我们公司第一年就节省了850万美元。”
3、使用生物识别单点登录数据访问管理
生物识别单点登陆(SSO)作为一种安全的数据库访问方法,它需要用户提供自己的生物特征来替代密码或者PIN。一旦他们登陆,他们将获得进入所有系统的通行证,而不次需要每次提示重新登录。
利用生物识别特征认证的SSO能提供更强大的身份验证和更高的安全性。现在,内部数据盗窃已经不可避免,一项有来自美国,英国,德国,法国和加拿大参与者参与的调查表明,数据信息泄露36%是由于员工使用不当或者疏忽造成的结果,而25%是来自内部人员的蓄意攻击。
此外,世界范围内的企业都遭受着数据丢失的内患,一项调查结果显示,世界上大约3900家企业由于数据丢失而损失金额成本平均在66万美元到938万美元之间。不安全的身份管理,弱密码和个人数据访问的不当认证往往是大多数企业数据安全漏洞的根源所在。采用生物识别SSO将会给企业带来很多优势,例如:更多的股票收益,更强的反欺骗能力,更高的识别精度,易于管理以及节约成本。
4、生物识别数字化签约
数字化签约已经在那些需要合法授权交易的组织中非常的普遍,例如:电子交易,电子邮件签约和电子政务在当今已经是一个不断发展的新趋势。电子签约能够提供很多益处,但是它们仍需要不断的自我完善,因为黑客们也在不断升级,使得传统的密码和智能卡遭受被假冒和访问权限丢失的风险。试想一下,当攻击者诱骗受害者签订不利的条款合约,把那些包含隐私的邮件发给用户本身并不知晓的收件人时,会发生什么?
而生物识别数字签名技术将会帮助解决传统数字签名单一识别的问题,解决用户丢卡或忘记密码的烦恼。
综上,生物识别技术不紧能够保护用户额隐私,提供更安全可靠的保护措施,而且还能够帮助企业有效的管理员工,提高效率,节约成本,这已然成为当今社会企业发展的必然趋势。当然,2014发生在国内外的数据泄密事件高达1367起,这还是属于已经确认的,我们可以想象还有多少无从确认或者无法公开的事件,2015年是不是会出现更过的泄露事件?大数据本身是为了提升我们的用户体验,而不是泄露用户的隐私的,不要让我们的大数据成为“大泄露”!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16