
DMP加速程序化营销进程:用大数据精准匹配用户
近期,腾讯广点通的DMP正式上线。这可以说是给互联网广告和大数据营销领域投掷了一颗炸弹。
所谓DMP(Data Management Platform 数据管理平台),顾名思义,就是整合所有涉及广告库存购买和出售的数据,通过这个平台可以建立精准用户细分,在广告网络和广告交易市场,使得广告投放直接到达这些选定的人群;同时,通过测量哪些用户细分群体和广告媒体在广告投放中具有最佳的表现,使媒体采购和广告创意可以得到适时的优化。
简而言之,DMP就是大数据营销的大脑,特别是程序化购买已是大势所趋。这个时候,DMP可以协助广告主管理广告投放、站点流量、电商成交、社交粉丝、受众兴趣等重要数据,并在科学建模和深入挖掘后向DSP提供中立的受众描述、全面的行为分析,协助广告主和媒介执行机构来优化广告投放的受众质量、评估DSP和Ad Exchange平台的转化效率和覆盖成本,从而使营销效果最大化。
既然DMP为数据管理平台,那么数据来源为何处?在美国,第三方DMP的商业模式是成立的,这些DMP强项在于拥有强大数据源,或者可以整合很多数据,所以能提供便利的第三方数据购买服务,例如eXelate,Lotame,BlueKai等等。
但是在中国,则国情有所不同。中国数据市场信息产业起步比较晚,数据产业链形成相对不完善,数据管理使用则较不规范;互联网数据泛滥、线下数据缺失诸如此类现象比比皆是,大部分数据掌握在政府部门、运营商和互联网巨头手里。
BAT三家互联网巨头,随着互联网和移动端的深入发展,用户在互联网上的各种行为,包括社交、电商、搜索等数据,都是从一定程度上能够反映出一个用户的偏好、习惯等各种各样的特征。这就是DMP的数据基础。
由于业务侧重点不同,BAT三家的数据特征非常明显:
1) 百度主攻搜索,他们声称可以知道60%多的中国网民每天都在搜索什么,对什么感兴趣;
2) 阿里强项是电商,他们清楚的是,消费者喜欢什么样的商品品类、喜欢什么样的服务。阿里的用户是直接的消费者,和钱的距离最近,所以在这个方面相对而言,通过阿里的数据来投放广告能够带来更直接的效果;
3) 至于腾讯则是精耕于社交领域十余年的公司,每个互联网用户都在腾讯的产品上因为社交而花费大量的时间,所以,腾讯某种程度上最清楚用户的各种兴趣爱好等行为特征。在这个基础之上,腾讯还把京东、58同城、搜狗搜索等这些腾讯系公司拉过来,一起补齐腾讯在电商、搜索等方面的数据短板。
然而,数据的量级大并不意味着其质量好,无价值的数据会大大降低营销效率与精准性。这需要DMP进行数据分析,留存精华。DMP通过各种算法对数据进行分析,能看到每个IDFA背后所隐藏的具体信息,有目的性的进行信息的分类进而实现人群描摹,形成用户人群标签,把每一个冰冷的数据,升级为可用的广告投放信息价值,为广告的投放奠定基础。此时,拥有海量高质数据与先进分析能力的DMP显得意义重大。
除此之外,从广告主的角度来看,稳定的消费者标识体系是非常重要的。社交身份的覆盖度和稳定程度在年轻消费者群体中有超过手机号码的迹象,以社交身份为核心,在去隐私化后积累、对接、发掘数据价值,会成为未来DMP的常规做法。所以,在营销领域,平台方所拥有的数据能力的竞争,实际上是用户社交关系和身份体系领域的竞争。BAT三家,唯有腾讯能够提供用户稳定的用户标识体系,这是在眼下统一用户数据孤岛最有效的解决方式了。
在腾讯广点通推出DMP之前,百度和阿里也已推出过DMP服务。阿里的相关产品叫阿里妈妈DMP(达摩盘),百度的产品叫百度DMP数据服务。但是目前,广点通组建DMP,或许能够成为后起之秀。腾讯财报显示,2015年第一季度,腾讯的网络广告业务的收入实现快速同比增长,主要反映QQ空间手机版和微信公众账号所带来的社交网络效果广告的收入增长。约40%的品牌展示广告来自移动平台,约75%的效果广告收入来自移动平台。而腾讯下一步的重点,将继续积极投资于主要内容以进一步提升公司的流量,并扩展公司的移动广告资源,提升公司的效果广告服务能力。所以,社交与效果广告部将会是腾讯社交数据变现的主力军。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16