京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网金融新革命 大数据将成关键词_数据分析师考试
大数据正在扮演互联网金融的发展“助手”,很多重大事件,比如央行[微博]降息,股市暴跌,在此前发生的搜索数据中,已经可以捕捉到热词变化。
百度[微博]日前发布的一份《新一代理财消费者搜索大数据报告》,为当前消费者对互联网金融的庞大需求进行了解析。报告显示,过去一年金融相关搜索以月均16%的速度增长,到2015年6月已达到近3亿次,同比增长328%。更多关于金融的消费需求通过搜索完成,消费者金融行为对于搜索的依赖性明显增强。
这样的数据能够能够揭示互联网金融怎样的发展趋势?传统金融机构与互联网的关系将发生什么样的变化?如此丰富庞大的搜索数据能为金融产品的投放与营销产生怎样的影响?
对此,互联网金融千人会秘书长易欢欢认为,高净值客户和大数据挖掘将成为影响未来互联网金融发展的关键点,一方面,高净值客户挖掘将让互联网金融带来新的发展深度,另一方面,互联网的大数据挖掘技术无疑将对金融领域客户在互联网端的产品设计、投放、营销产生重要影响。 理财用户行为影响互联网金融发展
在百度公布的这份大数据报告中显示,北上广和沿海发达城市中25—29岁,拥有大学学历的男性群体成为互联网金融投资消费群体的主体。他们更青睐于线上投资、碎片化、高风险的小额投资。在易欢欢看来,互联网的碎片化和产品化特点正在影响新一代理财消费者的投资行为特点,反过来,理财用户特点也让互联网金融行业产品化和碎片化程度进一步加深。这或许能对当下银行开发和投放金融产品一定借鉴价值。他认为,当前传统金融机构现有投资渠道不通畅,业务模式落后,便利性不高。互联网由于更好的客户服务体验,加之用户的年龄机构、层次、收入水平的综合因素,特别在普通用户中拥有更多市场,这也恰恰和报告中圈定的互联网金融消费人群主体吻合。
高净值人群——互联网和银行合作的下一个关键点
但互联网与传统银行合作以“宝宝类”产品为主要模式的现状正在被打破。在这份大数据报告中显示:2015年以来,理财者对各种宝宝类产品的热情正在下降,与2014年相比,对于宝宝类产品的搜索量下降了75%,反应出人们不再满足于3%—5%这样的低收益,间接印证了对高风险高收益和传统理财方式的回归。
该数据报告中也显示,2万以下的小额投资成最受互联网新一代“财民”青睐,占比61%。可见小额投资的“长尾客户”是这一领域的绝对主力人群。而100万以上的高净值客户仅仅占比2%。
在易欢欢看来,这恰恰反应出银行与互联网的合作还远远不够,一些产品的方向和类型设计需要创新。他认为,更多高净值客户的互联网金融需求正在提升,则这些互联网上的深度人群,恰恰是互联网和银行合作的下一个关键点。“这些高净值客户基本目前还没有成为互联网理财的主力人群,但恰恰具有巨大开发潜力,互联网和金融机构的合作未来将带给他们更多选择。”
大数据将成为未来互联网金融的关键词
此外,互联网对金融领域的影响还不仅仅是提供渠道和“入口”这么简单。大数据正在扮演互联网金融的发展“助手”,在这份《新一代理财消费者行为大数据报告》中显示,很多重大事件,比如央行降息,股市暴跌,在此前发生的搜索数据中,已经可以捕捉到热词变化。
在易欢欢看来,随着互联网对各个领域的深层渗透,大数据技术在金融领域的使用显然会成为主流。当前,大数据被炒成了一个噱头,很多消费者感受不到它的实际功能。但随着互联网和传统金融融合程度的加深,大数据对传统金融的影响也会慢慢告别当前噱头多,实际功能少的现状,能够让大数据产生实际价值的互联网企业将会赢得市场。易欢欢认为,互联网金融绝对不是互联网平台和金融产品的简单结合,很多现状已经显示,大数据等互联网技术已经开始深入到金融产业上游,参与到金融产品的设计、营销策略制定,风险评估等,这正是互联网和金融深度融合的方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08