京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据卖的就是隐私_数据分析师考试
随着互联网技术更新换代,数据的大规模采集和分析使用,已是人们生活的常态。高端分析算式的研发,使抽取数据中藏着的有用信息成为现实。于是数据的魔力大放异彩,给我们带来了梦寐以求的便利。例如,商家仿佛钻进消费者肚子里的孙悟空,你才转了个念头,电脑和手机就奇迹般地开始推送相关的商品广告了。真应了那句老话:心想事成。当然,我们也添了许多闻所未闻的麻烦,比如刚接通一个免费WiFi,银行账户信息就莫名其妙地泄露了。电视台天天报道,告诫大家警惕。但在市场弄潮儿眼里,数据还有更为奇妙的神功,那就是取之不尽、用之不竭的廉价原材料——元数据。元数据追踪着我们的生活,一刻不停又无处不在,仿佛一座座富矿,等待着算式处理、点石成金。多少人想挖掘这富矿……现在,终于打通了矿井,而那最后的爆破就是:数据商品化,公开合法的交易。
然而,要把数据交易这颗“明珠”稳稳当当地放上数据产业金字塔的顶端,尚有一道难题需要回答:数据要当做商品,它的所有权何在?
一样东西之成为商品,一是因为它有某种使用价值,如饮食、观赏、制作工具等;二是因为有人拿它来买卖,即实现其可交换的价值。如此就有了价格和市场。一般来说,商品的产权清晰,买卖才做得成。明确的所有权(ownership)归属,是商品参与市场交易的前提条件,而所有权的界定有赖于一套稳定的社会道德伦理和法律规范;否则就难以有效行使产权,包括市场交易,并合理合法地解决相关的纠纷。显然,数据作为商品,也不例外。不幸的是,信息时代虽然来临,数据的财产所有权却一直缺乏规范,滞留在法律的灰色地带。因此,海量的数据挂牌交易,对于市场秩序和交易双方,就充满了法律风险;而且,从社会公正的角度看,还极易损害被记录主体的一些公民基本权利,包括人格权与财产权,影响到民众的医保、生育、就业和人身自由权。为了降低并管控这些风险,我们有必要研究一下数据所有权的归属,对数据商品化,即新产权的攫取和扩张可能带来的社会后果考察一番。
数据的所有权到底该归谁?如,你在网上购物生成的数据,产权属于网店、网上购物平台提供商,还是你自己?患者就诊,病史信息归病人、医院,还是医院的电脑系统提供商?社保个人账户数据,属于参保者、政府、共同基金,抑或网络系统外包商?这是回避不了的问题,现行法律规范和学说却显得捉襟见肘,拿不出有说服力又便于操作的答案。为什么呢?我们仔细思考便会发现,那困境的起因,在于数据的不同寻常的价值特征,或者说,在于它正在获得的市场新身份——商品。
数据,若是指记录下来的一组信息,并不是什么新鲜事。自人类发明了记录工具和手段,如文字符号、纸张和硬盘,数据就一直伴随着我们。历史上,所有权不太受关注,是因为数据一般不会被当作商品,不参与市场交易;私下或非法的付费(如贿赂和谍报活动)不算。互联网技术大规模开发了数据的价值,数据商品化,所有权问题才凸显了。
作为商品,数据具有类似无形财产的特征,可以无限复制而无损耗;其所有权、许可使用、收益和转让,都依赖法律的保障。一般认为,无形财产的权属界定有一个特点,初始所有权与财产的生成及价值起源挂钩。例如,文学艺术作品的版权首先属于作者,因为作品是通过作者的劳动才产生,并有了价值。同样的素材,让不同的作者来创作(包括集体创作),作品的内容风格可以千姿百态。这说明,作品蕴含了作者的思想人格。所以,现代法律才把无形财产的初始所有权视为创作的果实,并把作品价值归于作者的人格和创造性劳动。恰恰在这一点上,数据与别的无形财产如版权,分道扬镳了。
我们知道,跟文艺创作和技术发明不一样,数据的价值不是因记录者的制作而起的。数据只有忠实于被记录主体,准确反映后者的身份性格行为习惯等等,才具有价值。换言之,记录下来的信息必须“无创见”、“非创新”,客观得像一面镜子,才有实用价值。不论血糖血脂的定期测量、消费习惯或借贷信用的曲线,还是网民访问网页的点击数、气候变化同粮食收成或公司营运的相关性数据:脱离了具体的被记录的人、物、事,数据是无意义、无价值也不能用的。不忠实的记录如果不是疏忽,便是编造,是假数据。可见,数据的全部价值,就在百分之百依附于被记录主体,而不能剥离了独立存在。于是,根据上述无形财产的一般原理,作品价值与初始所有权统一,数据所有权的生成(subsistence)应是在被记录主体。
这道理也符合我们的常识。比方说,同样一套数据,换一个人或一家公司记录,或者换一台电脑来处理、储存,丝毫不会改变数据内容。就数据的价值而言,谁来记录和用什么工具记录并不重要,重要的是被记录的是谁、是什么。诚然,数据的采集整理离不开记录者和记录工具,乃至投资方的支持。但投资和采集整理产生的是次生的权利,动摇不了数据的初始所有权。因为数据从属于被记录主体,两者不可分离,是数据价值的所在。而记录者及其工具手段与数据内容的关系则是松散的、可置换的,不是数据价值的起源。故而数据的初始财产权属于被记录主体,不仅有学理和社会道德的支持,落实在新产权的建设上,似乎也应是权利配置的“自然”选择。
不过,学理归学理,现实世界里大数据的监管,法律法规才刚起步,不太给力。这里涉及大数据的另一个特征:所有权人同记录者 / 占有者的分离,即数据的财产所有权人一般不是数据的记录和持有者——所有权人非但不占有数据,连接触、支配自己的数据财产也很困难。平常所谓财产问题,财产或者掌握在产权人手中,或者有明确的合同委托监护,如房产、首饰、存款。至少,产权人知晓财产的存在和财产权的归属。产权人有意愿,且依法有能力,行使自己的权利。但是遇到数据财产,情况就变了。例如,网店的交易双方可能不清楚,自己的行为已经被平台提供方记录在案,更无从了解是如何记录的,放进了哪些数据集,会交付谁使用,怎样使用。又如,互联网搜索器记录下的搜索行为的每一个细节,用户是无权访问,也没法监督的。这就使得被记录主体处于一个尴尬境地:他虽然拥有理论上的数据所有权,实际上却很难行使。反观数据记录者,尽管没有初始产权,却因为拥有记录工具和手段,就控制了记录过程、内容、格式和结果,把数据牢牢握在手中。而且,这法律意义上的受委托方,甩开了委托人 / 被记录主体,成了数据的唯一持有者。更微妙的是,大数据以量取胜,孤立的单个数据几乎没有商品价值;故而多数被记录主体容易忽视自己的数据产权。但是一个个数据集腋成裘,便是宝藏。而大型数据集的处理使用,须借助复杂的分析算式与大功率计算机,老百姓和小公司难以问津。渐渐地,大数据的采集整理,便成了财力雄厚的大公司的专利。产权人的疏忽或无力,即占有者的便利。后者往往随意使用数据,出了问题,后果也难以追究,包括数据丢失、黑市交易,更不要说个人隐私满天飞了。这是大数据时代的一道世界性的难题。
正是意识到这种复杂性,数据产业才决定绕开所有权,快刀斩乱麻:成立大数据交易所,挂牌交易,用既成事实“倒逼”社会和法律默许。推手希望通过交易所,给数据披上一件崭新的外衣,遮住所有权上的瑕疵。同时,利用媒体开展宣传攻势,淡化对个人隐私和公共利益的威胁,声称:“交易所交易的不是底层数据,而是清洗、分析、建模之后的数据结果。”(见《贵阳日报》2015年5月16日头版)似乎经过“清洗”,一下子解决了两个敏感问题:一、数据集经过清洗,遮蔽了身份信息,个人隐私、技术秘密等就能获得保护;二、清洗过后,数据便摆脱了初始所有权而有了新的业主,可以合法交易了。但事实上,所谓“清洗” 并不等于“脱敏”。更重要的是,法理上,“清洗”这一技术手段不可能将“底层数据”的所有权转移到所谓“数据结果”。就像拿了别人的珍珠项链,不会因为把珍珠拆下重新串过,项链变长变短,或者镶在几只胸针上,那些珍珠就变成自己的财产,就可以合法出售。所以“清洗”只是回避问题的一种说法;那被回避的,才是数据商品化的要害所在:底层数据到底属于谁?谁说了算?
所以不是偶然,最近美国多个农会的一次联合行动,正是这样的质问和拒绝“倒逼”。他们的立场与上述讨论殊途同归,我以为代表了国际潮流,体现了前沿社会在数据所有权归属及衍生权利范围等问题上的基本共识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21